The Onset of Collective Behavior in Social Amoebae
T. Gregor, K. Fujimoto, N. Masaki and S. Sawai, Science 328, 1021-1025 (2010).
In the social amoebae Dictyostelium discoideum, periodic synthesis and release of extracellular cyclic AMP (cAMP) guides cell aggregation and commitment to form fruiting bodies. It is unclear whether these oscillations represent an intrinsic property of individual cells or if they only exist as a population-level phenomenon. Here we show by live-cell imaging of intact cell populations that pulses originate from a discrete location despite constant exchange of cells to and from the region. In a perfusion chamber, both isolated single cells and cell populations switch from quiescence to rhythmic activity depending on the level of extracellular cAMP. A quantitative analysis shows that stochastic pulsing of individual cells below the threshold concentration of extracellular cAMP plays a critical role in the onset of collective behavior.