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A conserved coupling of transcriptional 
ON and OFF periods underlies bursting 
dynamics
 

Po-Ta Chen1,4, Michal Levo    1,2,4, Benjamin Zoller    1,3,4 & Thomas Gregor    1,3 

Transcription commonly occurs in bursts, with alternating productive 
(ON) and quiescent (OFF) periods determining mRNA production rates. 
However, how bursting dynamics regulate transcription is not well 
understood. Here, we conduct real-time measurements of endogenous 
transcriptional bursting with single-mRNA sensitivity. Using the diverse 
transcriptional activities present in early Drosophila embryos, we find 
stringent relationships between bursting parameters. Specifically, ON 
and OFF durations are tightly coupled, and each level of gene activity 
is associated with a characteristic combination of these periods. Lowly 
transcribing alleles primarily adjust OFF periods (burst frequency), while 
highly transcribing alleles tune ON periods (burst size). These relationships 
persist across developmental stages, body-axis positions, cis-regulatory or 
trans-regulatory perturbations and bursting dynamics observed in other 
species. Our findings suggest a mechanistic constraint that governs bursting 
dynamics, challenging the view that regulatory processes independently 
control distinct parameters.

Eukaryotic transcriptional regulation is an inherently dynamic and 
stochastic process, orchestrated by a series of molecular events govern-
ing productive transcription initiation by individual RNA polymerases 
(Pol II complexes)1,2. This process culminates in nascent RNA synthesis, 
which shapes protein production and thus dictates cellular identity and 
behavior in space and time. Consequently, revealing the fundamental 
principles underpinning transcriptional dynamics is paramount for 
understanding and predicting cellular phenotypes.

Research on various biological systems, from yeast to mammalian 
cells, has revealed that transcription occurs in bursts. These bursts 
involve the release of multiple Pol II complexes during an active phase, 
known as the ‘ON’ period, followed by a quiescent ‘OFF’ period3–9. 
However, several critical questions remain unanswered regarding how 
the regulation of bursting kinetics determines mRNA production and 
transcriptional dynamics across developmental time and cell types; 
whether the transcription rate is primarily regulated by adjusting the 

ON or OFF durations, the initiation rate (that is, the rate of Pol II release 
during active phases) or a combination of these parameters; what spec-
trum of parameters is used by tightly regulated genes, such as develop-
mental genes; whether different genes use distinct bursting strategies; 
and whether these strategies vary across space (tissue-specific) and 
time, or how they depend on various regulatory factors.

One hypothesis that has emerged from previous work suggests 
that different regulatory determinants, including transcription factor 
binding, cis-regulatory elements, nucleosome occupancy, histone 
modification, Pol II pausing and enhancer–promoter interactions, 
may influence distinct aspects of bursting dynamics10–19. For instance, 
it has been proposed that enhancers primarily impact burst frequency, 
whereas promoters mostly affect burst size20–22. However, integrat-
ing diverse observations into a unified and quantitatively predictive 
understanding of transcriptional control through bursting dynamics 
has proven challenging.
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suggesting that these parameters are not independently regulated 
but arise from coordinated processes. Gene activity levels are achieved 
through specific combinations of ON and OFF durations, regardless of 
gene identity or spatiotemporal context. Low-activity alleles primar-
ily adjust OFF periods (modulating frequency), while mid-activity to 
high-activity alleles adjust ON periods (modulating size). This coupling 
holds across diverse regulatory landscapes, as we demonstrate with 
cis and trans perturbations, and appears broadly conserved in other 
organisms. As these dependencies do not straightforwardly stem from 
known molecular mechanisms of transcription initiation, our findings 
challenge current models and provide a framework for future investiga-
tions into the process of mRNA production.

Results
Instantaneous single-allele transcription rate measurements
We developed a quantitative approach to measure endogenous burst-
ing dynamics at a single-allele level in living Drosophila embryos. To 

Our previous study23, which relied on inference from a static snap-
shot of mRNA abundance, raised the possibility of a simple and unified 
control of bursting kinetics, even in complex developmental systems. 
Specifically, mRNA abundance of key developmental genes in fixed 
Drosophila embryos within a narrow developmental window (~10 min) 
could be accounted for by a straightforward two-state kinetic model 
of transcription, with a single free parameter. This motivated our cur-
rent efforts to directly measure bursting dynamics rather than rely on 
specific kinetic assumptions to infer dynamics from a fixed sample. 
Moreover, we aim to assess the impact of developmental time and regu-
lation on bursting behavior by conducting measurements throughout 
cell cycles and under perturbations to key regulatory determinants.

Here, we present real-time transcription measurements with 
single-mRNA sensitivity, characterizing the bursting dynamics of cell 
fate-determining genes in early Drosophila embryos. Our findings 
reveal tight relationships between bursting parameters, including 
the coupling of ON and OFF periods (or burst size and frequency), 
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Fig. 1 | Live single-cell transcription rate measurements of endogenous gap 
genes. a, Live fluorescence imaging of nascent transcripts using MS2 stem-loops 
measures single-allele transcriptional activity (green hotspots) along the 
anterior–posterior (AP) axis of the fly embryo (see Extended Data Fig. 1a and 
Methods). MCP, MS2 coat protein. b, Transcription time series for ten alleles (blue) 
of the gap gene hunchback (hb) at position x/L = 0.435 ± 0.010 sampled every 10 s. 
Low embryo-to-embryo variability (Supplementary Fig. 1g) enables pooling alleles 
from multiple spatially and temporally aligned embryos (n = 10–20) to average over 
200–350 alleles at a given position (black). c, Calibration of transcriptional activity 
in absolute units performed by matching mean spatial activity profiles from 
previously calibrated fixed smFISH measurements23 (black) with 5 min interval 
averages (gray shade in b) of live time series at each AP position (color) for all 
examined gap genes. A single global conversion factor matches live and fixed 
profiles to within 5% error (Extended Data Fig. 1b), defining a unit for 
transcriptional activity (that is, the cytoplasmic unit, C.U.66,67) equivalent to a fully 
tagged transcript. d, Reconstruction of transcription initiation events from 
deconvolution of single-allele transcription time series. The signal is modeled as a 
convolution between transcription initiation events and a kernel accounting for 
the elongation of a single Pol II through the MS2 cassette and the gene body (using 

an elongation rate Kelo = 1.8 kb min−1; Supplementary Fig. 2). Bayesian 
deconvolution is performed by sampling from the posterior distribution of 
possible configuration of initiation events given the measured activity and 
measurement noise (Extended Data Fig. 1e,f). e, Example deconvolved initiation 
configuration (gray bars, top) and corresponding reconstructed signal (green) 
from a single-allele transcription time series (black). Single-allele transcription rate 
(gray) is estimated by counting the number of initiation events within 10 s intervals 
for a given sampled configuration and averaged over 1,000 such configurations. 
The displayed solid line and envelope for transcription rate (gray) and 
reconstructed signal (green) correspond to the mean and 1 s.d. of the posterior 
distribution. f, Autocorrelation (AC) functions of single allele hb transcription rates 
averaged over time for different positions along the AP axis (color). AC functions 
are normalized by the variance; uncorrelated (1−ΣAC) and time-correlated (ΣAC) 
components of the rate fluctuations are highlighted (see Extended Data Fig. 5).  
g, Correlation time τAC (from fitted exponentials; see Methods) of the single-allele 
transcription rate as a function of mean transcription rate R (color-coded as in c, 
with NC13 (squares) and NC14 (circles)). The dashed line corresponds to overall 
mean correlation time ̄τAC = 1.37± 0.31 min. Error bars, 68% confidence intervals.
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achieve this goal, we used a versatile CRISPR-based scheme24 to incor-
porate MS2 cassettes into intronic or 3′ untranslated regions (3′ UTRs) 
of the gap genes. These cassettes form stem-loops in the transcribed 
nascent RNA, which are subsequently bound by fluorescent coat 
proteins (Fig. 1a, Extended Data Fig. 1a and Methods)25–28. We used a 
custom-built two-photon microscope to generate fluorescence images, 
allowing us to capture RNA synthesis from one tagged allele per nucleus 
with nearly single-mRNA sensitivity (Extended Data Fig. 1b–f). Our 
optimized field-of-view provided 10 s interval time lapses (Fig. 1b) for 
hundreds of nuclei per embryo during a critical 1.5 h period of embry-
onic development, specifically nuclear cycles 13 (NC13) and 14 (NC14), 
for robust statistical analysis (Fig. 1a,b and Supplementary Videos 1–4).

We calibrated the fluorescence signal using single-molecule fluo-
rescence in situ hybridization (smFISH) data to express our dynamic 
transcription measurements in terms of absolute mRNA counts (Fig. 1c, 
Extended Data Fig. 1b,c and Methods). This calibration, along with 
control lines using 3′-UTR MS2 insertions, confirms that the intronic 
readout of our short genes (<5 kb, including MS2 loops) is unaffected 
by splicing9 (Extended Data Fig. 1a,b). Additionally, we verified the 
absence of bleaching during imaging, as indicated by the stability of 
the measured background over 1.5 h (Extended Data Fig. 1d). Lastly, we 
characterized our measurement noise using an interlaced MS2–PP7 
dual-color reporter line, which showed a strong correlation between 
the two independent channels. The resulting signal-to-noise ratio is 
approximately 1 at one mRNA count. It increases with mean activity, 
confirming that our sensitivity is close to detecting individual mol-
ecules (Extended Data Fig. 1e,f).

The smFISH-based calibration, combined with nearly 
single-transcript sensitivity of our measurements, enabled us to recon-
struct the underlying Pol II transcription initiation events for each allele 
using Bayesian deconvolution (Methods). The convolution kernel we 
used describes the fluorescent signal resulting from the release of 
Pol II complexes onto the gene, which subsequently engages in the 
elongation process17,21 (assuming constant and deterministic elonga-
tion; Fig. 1d). For each time trace, our Bayesian approach generates 
multiple configurations of transcription initiation events. By averaging 
these configurations, we obtained a time-dependent instantaneous 
single-allele transcription rate, denoted r(t) (Fig. 1e). Importantly, 
this approach also provides corresponding error estimates, which we 
propagated in all subsequent analyses.

Our kernel-based deconvolution approach was validated by control 
measurements involving dual-color tagging of the gene body, at 5′ and 
3′ regions (Extended Data Fig. 2a,b and Methods). Furthermore, the dual 
tagging allows us to extract a Pol II elongation rate, denoted Kelo, which 
we determined to be 1.8 ± 0.1 kb min−1. This value aligns with previous 
measurements reported in the literature27,29 (Extended Data Fig. 2c–e).

With our approach, the extracted single-allele transcription rates 
are no longer masked by the Pol II elongation dwell time, unlike the 
directly measured intensities. Instead, they capture initiation events 
(that is, Pol II release for productive elongation). Consequently, these 
rates are independent of gene length, allowing direct comparisons 
across different genes. This facilitated the intriguing observation that 
the gap genes’ average transcription rate, computed over nuclei per 
spatial position and time, denoted as R = ⟨r⟩, reaches a similar maxi-
mum of Rmax = 14.8 ± 0.9 mRNA min−1 (Extended Data Fig. 3a and Sup-
plementary Video 5). Moreover, these average transcription rates 
closely mirror the well-documented average protein dynamics30. Sim-
ple assumptions related to diffusion and lifetime, without the need for 
explicit post-transcriptional regulation, are sufficient to quantitatively 
predict protein patterns from the mean transcription rates, R (Extended 
Data Fig. 4 and Supplementary Video 6). Thus, in this system, the func-
tional output, namely protein synthesis, predominantly relies on tran-
scription regulation. Our quantitative imaging and deconvolution 
approach paves the way for uncovering how this regulation emerges 
from the single-allele transcription dynamics.

Single-allele rates point to a universal bursting regime
The gap genes exhibit spatial and temporal variation in their tran-
scriptional activities. However, when we examine the distributions 
P(r|R) of single-allele transcription rates r that correspond to a given 
mean transcription rate R, an intriguing pattern emerges. These dis-
tributions converge across different genes (Extended Data Fig. 3c and 
Methods), pointing to a shared transcriptional regime. We observe 
an abundance of non-transcribing or barely transcribing alleles for 
transcription rates in the low to mid-range of R, distinct from the 
expectation under a constitutive transcription regime. Conversely, 
for transcription rates in the high range of R, the distributions 
approach a constitutive, or Poissonian, regime (Extended Data Fig. 3d), 
reflecting a higher proportion of active ON alleles. These observa-
tions align with the concept of transcriptional bursting, in which 
alleles dynamically transition between productive ON and quiescent  
OFF states3,31.

We obtain additional support for a common bursting regime 
when we analyze the temporal dynamics of single-allele time traces. 
Bursting is expected to introduce temporal correlations in transcrip-
tional activity, reflecting the persistence of the ON and OFF periods 
(Extended Data Fig. 5a,b). To characterize such correlations, we com-
pute autocorrelation functions for the deconvolved single-allele 
transcription rates. By using the deconvolved rates, we effectively 
remove the correlated component arising from Pol II elongation 
along the gene and isolate only the correlations stemming from the 
initiation and the ON–OFF switching process. When we calculate 
these autocorrelation functions for different anterior–posterior 
bins, nuclear cycles and various genes (Fig. 1f and Extended Data 
Fig. 5c), we find striking similarities. An initial sharp drop at our 
sampling timescale (~10 s) indicates the presence of uncorrelated 
noise, consistent with independent Pol II initiation events (Extended 
Data Fig. 5d). This drop is followed by a longer decay of correlated 
noise at a timescale denoted τAC, which we find to be confined within 
a 1–2 min range (Fig. 1g). The remarkable consistency of τAC across 
different spatial locations, genes and transcriptional activity levels 
(spanning R) implies the preservation of this fundamental timescale 
of transcription dynamics. To delve deeper into potential regularities 
in bursting dynamics, we next directly extract individual bursts from 
single-allele time traces.

Allele-ON probability is the key control parameter
From the deconvolved initiation events along individual time traces 
(Fig. 2a top), we identify distinct ON and OFF periods of active and 
inactive transcription, respectively. The ON periods are characterized 
by consecutive initiation events (that is, multiple Pol IIs released for 
productive elongation), while the OFF periods are transcriptionally 
inactive (Fig. 2a, bottom). To delineate the transition of an allele from 
an OFF to an ON state, we use a simple threshold on the moving average 
of the single-allele transcription rate, set to 2 mRNA min−1 over a 1 min 
window. This criterion was selected based on our detection sensitivity, 
allowing us to reliably detect 1–2 mRNA molecules, at the timescale 
derived from the autocorrelation analysis (see Methods).

To validate our method, we tested our burst-calling routine exten-
sively on simulated data (Supplementary Figs. 1 and 2). As the true 
generative model is unknown, we tested our method using a subset 
of commonly used bursting models, including a two-state model, a 
three-state pause model and a six-state cycle model9,12,17,21,32–34. These 
models primarily differ in their distributions of ON and OFF periods 
(for example, exponential for the two-state model). A key strength of 
our burst-calling routine is its reliance on a minimal clustering model, 
which avoids explicit assumptions about these distributions. Con-
sequently, the burst detection process is agnostic to the underlying 
mechanistic details. Simulations demonstrate that our approach per-
forms robustly across a wide range of (stationary and time-dependent) 
kinetic parameters and model classes (Supplementary Figs. 1a–g and 2), 
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as evident by an overall median error of 10%. Finally, we evaluated the 
impact of our detection window and threshold on burst characteriza-
tion and confirmed that our chosen detection parameters minimize 
errors (Supplementary Fig. 1h,i).

The next goal of our analysis is to elucidate how the consecu-
tive switches between ON and OFF periods quantitatively govern the 
transcription rate, R. Specifically, the mean transcription rate at time 
t, denoted R(t), can be decomposed into two distinct parameters: the 
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Fig. 2 | Direct estimation of bursting parameters reveals predominant control 
by the ON probability. a, A simple clustering procedure on single-allele 
transcription rate determines bursts of transcription. The rate (gray curve) is 
estimated using a moving window of width ~1 min over the deconvolved initiation 
events (gray vertical bars). A threshold at two mRNA min−1 (black horizontal 
dashed line) applied to the rate identifies individual bursts (blue curves). For 
tests of the burst-calling procedure on simulated data, see the Supplementary 
Information. b,c, Heatmaps of deconvolved single-allele transcription rates (b) 
(estimated over 10 s intervals) and of corresponding ON–OFF periods (c) 
(obtained from burst calling) as a function of time during NC14 for n = 217 nuclei 
expressing hb-MS2 at AP position x/L = 0.43. Instantaneous mean transcription 
parameters such as transcription rate R (b, bottom) and ON probability PON  

(b, bottom) are obtained by vertically averaging the heatmaps (top) over all 
nuclei, respectively. d,f, Hb transcription rate R (d), initiation rate K (e) and ON 
probability PON (f) as a function of time in NC14 (color encodes AP position). R and 
PON are computed as in b and c, respectively, and K is obtained by averaging the 
single-allele transcription rate (b) conditioned on the locus being ON (c) over all 
nuclei in each AP bin. g,h, Transcription rate R (g) and initiation rate K (h) as a 
function of PON, for all time points and positions, demonstrating a massive data 
collapse, suggesting that PON is the central regulatory parameter for 
transcriptional bursting. i, Control parameters PON and K as a function of mean 
transcription rate R in log space. Given that logR = logK+ logPON by 
construction, changes in PON determine changes in R below the dashed line 
(R ∼ 8.5 mRNA min−1, corresponding to PON = 0.75).
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instantaneous probability of an allele being in the ON state PON(t), rep-
resenting the fraction of ON alleles at time t, and the mean initiation 
rate, K(t), for ON alleles. The variation in R could arise from changes in 
either K, PON or both.

Starting with the gene hb, we estimate the time-dependent param-
eters R(t) and PON(t) for each anterior–posterior bin. To obtain R(t), we 
calculate the average of ~250 single-allele instantaneous transcription 
rates (Fig. 2b). Concurrently, we determine PON(t) by quantifying the 
fraction of alleles in the ON state at each time point (Fig. 2c). To com-
pute K(t), we average initiation events restricted to the ON state. By 
repeating this procedure for all anterior–posterior positions, we reveal 
the spatiotemporal variations in PON and K (Fig. 2d–f).

We find that all three parameters vary significantly across space 
and time (Fig. 2d–f). As expected, we observe the interdependence 
R = K × PON  (Extended Data Fig. 6a). However, our analysis reveals  
that changes in R are primarily governed by variations in PON, whereas 
K has a more moderate and less predictive role (Fig. 2g–i and Extended 
Data Fig. 6d). On average, K displays a threefold change in dynamic 
range, which is modest compared to R spanning 0 to 15 mRNA min−1 
(Fig. 2g,h). This variation in K is largely attributable to the presence of 
two optically unresolved sister chromatids35 and a modest time depend-
ence of K across nuclear cycles, as we further discuss below (Extended 
Data Fig. 6e–j and Methods). These findings suggest that the transcrip-
tional activity of hb is predominantly controlled by the probability of 
an allele being in the ON state, while transcription initiation occurs at 
a largely constant rate once the allele is ON.

Characteristic ON and OFF periods per ON probability
Any given ON probability can result from various combinations 
of mean ON and OFF periods, denoted as TON and TOFF. Given that 
PON = TON / (TON + TOFF) near steady state, rescaling both TON and TOFF can 

achieve the same PON. Upon computing the mean ON and OFF peri-
ods TON and TOFF (Extended Data Fig. 6k and Methods), we find that 
these periods vary substantially across space and time (see Fig. 3a and 
Extended Data Fig. 6n for full distributions). However, when we plot 
TON and TOFF against PON, we observe that all data points collapse onto 
two tight, anti-symmetric relationships (Fig. 3b,c). Despite the possi-
bility of multiple combinations of TON and TOFF for any given PON, these 
relationships consistently associate each PON value with a unique pair 
of TON and TOFF values, irrespective of spatial position or time. These 
findings suggest that the dynamic switching between TON and TOFF may 
be governed by an additional intrinsic timescale.

The switching dynamics between ON and OFF states are associated 
with a correlation time, TC, which determines the time separation 
required for the transcription rate of a single allele to become uncor-
related. TC can be computed directly from the mean ON and OFF times 
using the equation 1/TC = 1/TON + 1/TOFF (Fig. 3d). For hb, we find that 
TC is confined around 1.1 ± 0.2 min across all positions and time points 
and appears to be independent of PON.

Given that TON and TOFF can be expressed as functions of PON and TC, 
namely TON = TC / (1 − PON) and TOFF = TC/PON  (Fig. 3c), the value of TC 
corresponds to the lower limit of TON and TOFF (when PON approaches 
one or zero, respectively). We indeed find a similar minimal value for 
the mean ON and OFF periods on the order of 1–1.5 min, which is larger 
than the minimal ON and OFF period we can reliably detect (that is, 
~30 s and ~10 s, respectively, with an upper bound of ~40 min set by 
nuclear cycle length; Supplementary Fig. 1f,g and Methods).

Furthermore, the constancy of TC effectively links the mean ON 
and OFF times. This provides a mathematical explanation for the tight 
anti-symmetric relationships between TON, TOFF and PON (Fig. 3c). Thus, 
not only does PON govern the mean transcription rate R, it also divulges 
information about the entire transcriptional bursting dynamics, with 
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Fig. 3 | Characteristic ON and OFF periods underlie each allele-ON probability. 
a, Hb mean OFF time (TOFF) and mean ON time (TON) as a function of time in NC14 
(color encodes AP position). TOFF and TON are obtained by the weighted average of 
the ON and OFF periods over all nuclei at the same AP position (see Fig. 2c and 
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within each period. b, The ratio of TON over the sum of TON and TOFF versus ON 
probability (PON) for all positions and time points past the 7.5 min mark in a. Near 
steady state, both quantities are expected to be equal after initial transient (see 

Extended Data Fig. 6l,m). Thus, temporal changes in transcriptional parameters 
must be slow enough to allow relaxation. c, Mean TOFF and TON as a function of  
PON for all positions and time points past the 7.5 min mark in a. Dotted line 
corresponds to mean TC = 1.1 ± 0.2 in d, which sets a lower bound on possible  
TOFF and TON values. d, Effective switching correlation time TC (defined as: 
1/TC = 1/TON + 1/TOFF) as a function of PON, computed using data points in a. TC is 
mostly conserved across time points and position, and is independent of PON.
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a characteristic combination of ON and OFF periods associated with 
any PON value.

Common bursting relationships underlie gap gene regulation
The gap genes differ in the composition, number and arrangement 
of their cis-regulatory elements (Extended Data Fig. 1a), resulting in 
distinct regulatory binding events36. Consequently, each gene displays 
unique spatiotemporal transcriptional activities (Fig. 1c and Video 5). 

Despite these differences, we find that the relationships governing 
bursting parameters for hb appear to generalize to other gap genes.

When we applied our burst-calling procedure (Fig. 2a) to the tran-
scription time traces of other gap genes (gt, Kr and kni), we obtained 
distinct spatiotemporal PON profiles (Fig. 4a and Extended Data Fig. 7a) 
that closely mirrored the gene-specific transcription rates R. Indeed, 
all genes exhibit nearly identical relationships between R and PON 
(Fig. 4b) and between K and PON (Extended Data Fig. 7c), affirming that 
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Fig. 4 | Transcription parameters collapse for all gap genes. a, Kymographs 
of PON for all gap genes (hb, gt anterior region, Kr, kni and gt posterior region) 
as a function of position and time for NC13 and NC14. The spatiotemporal 
transcriptional pattern of the gap genes arises from a complex regulation of PON 
(color map). b–e, Transcription parameters collapse for all gap genes across 

time and position. Transcription rate R (b), mean OFF time TOFF (c), ON time TON 
(d) and switching correlation time TC (e) as a function of PON. Colored data points 
represent individual gap genes (same color code as in a; see Extended Data  
Fig. 7a,b for gt male data). Each panel shows all the remaining genes in gray.
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PON is the predominant factor governing transcriptional activity across 
time, space and genes.

The genes exhibit similar TOFF -to- PON and TON -to- PON relationships 
(Fig. 4c,d). This means that for different genes displaying a specific 
PON value—potentially at different spatiotemporal coordinates—the 
underlying TON and TOFF periods are largely identical. This finding can 
be traced back to the conservation of the switching correlation time 
TC across all positions, times and genes (Fig. 4e). The average TC value 
(1.25 ± 0.37 min) aligns closely with the timescale predicted by the 
autocorrelation analysis (Fig. 1g). Importantly, the convergence of 
these bursting relationships among gap genes is not an artifact of our 
method, as this approach can reliably estimate TC from 0.5 min to 10 min 
(Supplementary Fig. 1f,g).

Moreover, the common bursting relationships apply not only 
across genes but also across distinct spatiotemporal activity domains 
of a single gene, which can be driven by distinct enhancers37,38. 
This is evident in the large but distinct anterior and posterior 
domains of the gene gt (Fig. 4a and Extended Data Fig. 7a). The use 
of similar bursting parameters across distinct spatial patterns of 
a single gene was proposed in a study of a reporter construct of  
the gene eve39,40.

Pooling the parameters derived from all genes, times and loca-
tions—comprising over 3.3 × 104 parameter estimates—highlights the 
limited subset of the parameter space that is used and underscores 
the stringent quantitative relationships emerging from our dataset 
(Fig. 5a–c). When we divide the data into three developmental time 
windows, these relationships become even more tight, suggesting 
a modest developmental time dependence (Extended Data Fig. 8a). 
Notably, the relationships obtained within the first developmental 
window (spanning NC13 and early NC14) show a twofold improvement 
in precision compared to our sparse estimates using fixed measure-
ments in NC13 (ref. 23) (Extended Data Fig. 8b).

The relationships obtained are further simplified when we 
consider that our measurements reflect effective allele rates16,21,34.  
By using the data to gauge the correlation between the unresolved 
sister chromatids, we can compute single gene copy parameters 
(Extended Data Fig. 8c and Supplementary Figs. 3 and 4). Specifi-
cally, we find that a two-state model, with largely independent or 
weakly correlated sister chromatids, recapitulates key statistical 
properties of the data (Supplementary Fig. 3). This model allows 
us to estimate the mean initiation rate for a single active copy at 
6.4 ± 1.3 mRNA min−1 and recover a mean Pol II spacing of 299 ± 99 bp. 
This is consistent with the classic Miller spreads with average Pol II 
spacing of 330 ± 180 bp41. Furthermore, when we convert our entire 
set of single allele parameters into their single gene copy equivalent, 
the largely conserved K and the almost linear relationship between R 
to PON become even more evident (Extended Data Fig. 8c and Supple-
mentary Fig. 4). Thus, our analysis shows that across all data points, 
the mean transcription rate R is primarily governed by PON, with only 
limited modulation of K.

The near-constant switching correlation time TC observed across 
the pooled dataset is associated with an apparent inverse proportional-
ity between TON and TOFF, with a predominant modulation of one of  
these two parameters when PON changes. Although lowly transcribing 
alleles (as characterized by PON) tend to achieve higher expression levels 
mainly by reducing TOFF, medium-to-high-transcribing alleles are pre-
dominantly tuned by extending TON (Fig. 5d). This observation means 
that changes in burst frequency (F = 1/(TON + TOFF)) govern tuning of 
the transcriptional activity of low-transcribing alleles, while changes 
in burst size (B = K × TON) exert greater influence on the tuning of 
medium-to-high-transcribing alleles (Fig. 5c,e).

The association between gene activity level and bursting param-
eters holds across genes, spatial locations and time points (Fig. 5 and 
Extended Data Figs. 7 and 8), indicating its relevance across diverse 
regulatory landscapes.

Bursting relationships predict cis and trans perturbations
A multitude of regulatory determinants, including cis-regulatory ele-
ments like enhancers and trans factors such as transcription factor 
repressors, collectively shape transcriptional outcomes. It is commonly 
assumed that distinct regulatory mechanisms directly influence spe-
cific bursting parameters. Thus, we sought to perturb various regula-
tory determinants to assess whether they produce distinct effects on 
bursting dynamics or follow the relationships identified from wild-type 
measurements.

Upon endogenous deletion of the distal enhancer of hb, we 
observe significant alterations in transcriptional activity (Fig. 6a,b 
and Supplementary Video 7), including increased or decreased activ-
ity, at different times and locations along the anterior–posterior  
axis, consistent with previous findings42. However, we find that  
bursting dynamics in this mutant still adhere to the wild-type rela-
tionships. Specifically, transcription rates across spatiotemporal 
coordinates are again governed by PON, the stringent relationships 
between TON, TOFF and PON hold and the switching correlation time TC 
remains broadly conserved around 0.9 ± 0.2 min (Fig. 6c Extended 
Data Fig. 9g–j).

Two additional perturbations further confirmed these findings. 
Deleting the distal enhancer of kni results in a significant reduction 
in kni activity (Extended Data Fig. 9a,b and Supplementary Video 8). 
Although the mutant exhibits a narrower dynamic range of activity, we 
observe a similar data collapse within this reduced range (Extended 
Data Fig. 9c,g–j). Next, we explored the effect of a trans perturba-
tion by measuring kni activity in embryos with a hb null background 
(Extended Data Fig. 9d,e and Supplementary Video 9). This trans 
perturbation significantly alters kni activity, consistent with earlier 
studies43,44 (Extended Data Fig. 9f). However, the underlying bursting 
dynamics again collapse onto the same bursting relationships (Fig. 6d 
and Extended Data Fig. 9g–j).

The consistency of PON-to-TON and PON-to-TOFF relationships in 
wild-type and mutants suggests that we can predict how ON and OFF 
periods change upon a perturbation. Performing such a prediction 
relies solely on how the activity level, captured by PON, changed. Nota-
bly, for each type of perturbation, we predict instances of predominant 
TON and instances of predominant TOFF modulation at different spati-
otemporal coordinates (Fig. 6e). Comparing predictions based on the 
wild-type-derived relationships with the directly measured TON and TOFF 
from the mutant, we find agreement as to which parameter was primar-
ily altered in more than ~86% of cases for all spatiotemporal coordinates 
(Fig. 6e and Extended Data Fig. 9k,m,o). Additionally, similar successful 
predictions are achieved when assessing the change in transcriptional 
activity in terms of altered burst size versus burst frequency (Fig. 6f and 
Extended Data Fig. 9l,n,p). These findings challenge previous intuitions 
linking perturbations of specific regulatory elements or mechanisms 
to changes in a particular bursting parameter. Instead, these findings 
suggest the predictive power of PON, a proxy of the transcription activ-
ity, across different perturbations.

To further explore the generality of these observations, we exam-
ined data from two previous studies in the early fly embryo. One 
focused on the transcriptional effect of BMP signaling, a dorsoventral 
morphogen16. Transcription of a BMP target gene, u-shaped (ush), 
was measured across different dorsoventral positions and under 
ectopic signaling. A second study used synthetic reporter constructs 
to examine the transcriptional effect of two core promoter motifs 
(TATA box and Initiator)21. These studies pointed to the modulation 
of distinct bursting parameters, and although the analyzed genes and 
perturbed regulatory determinants differ from those we measured, 
we found that the datasets collapse onto our identified bursting 
relationships (Fig. 6g).

As suggested in these studies, the first dataset shows predomi-
nantly TOFF modulation, while the latter study has primarily TON changes. 
Intriguingly, when plotted in the context of the full spectrum of PON 
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values captured by our measurements, the two independent datasets 
cluster in disjoint halves (Fig. 6g). Our analysis raises the possibility 
that the predominantly changed parameter (TOFF versus TON) might not 
be inherent to the examined regulatory manipulation (for example, 
input transcription factor concentrations or core promoter elements) 
but rather a consequence of the expression range (the PON regime) of 
these genes.

Data across organisms adheres to bursting relationships
The conserved nature of the transcription machinery and regulatory 
mechanisms across eukaryotes suggests that fundamental proper-
ties, probably reflecting molecular constraints, apply to numerous 
systems45. However, technical and biological factors currently hinder 
the ability to perform direct measurements of bursting dynamics and 
quantitatively compare parameter values or dependencies across 
diverse settings. For example, our analysis above highlights the neces-
sity of a large dynamic range of gene activity to reveal underlying 
relationships. Yet a large dynamic range is not readily observed in 

many setups. Using absolute units (for example, calibrating arbitrary 
fluorescent units to mRNA counts) is crucial for estimating measure-
ment sensitivity and facilitating comparisons across genes, pertur-
bations and systems. Additionally, an analysis that decouples the 
contribution of different biological steps to the measured signal (for 
example, transcription initiation, elongation and mRNA half lives) is 
essential. These considerations guided our re-examination of data in 
yeast and mammalian cells.

To facilitate comparison, we computed the equivalent single gene 
copy parameters for all the fly data, as discussed above (Extended Data 
Fig. 8c, Supplementary Fig. 4 and Methods). We examined bursting 
parameters derived from extensive perturbations of a yeast gene19 
and found strong agreement with our observations from the early 
fly embryo (Fig. 7a). Although the yeast data points span a relatively 
small range of bursting parameters compared to the developmentally 
regulated Drosophila genes, they are consistent with the TON-to-PON 
and TOFF-to-PON relationships and show a highly constrained TC value 
of 1.1 ± 0.1 min, within our observed range.
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relationships. a–c, Global scatter and density (color) of transcription parameter 
estimates for all gap genes across space and time as a function of PON, normalized 
by the maximum conditional density with respect to PON. Potentially accessible 
space (gray shade) for plausible ranges of K (0.1–30 mRNA min−1) and TC 
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the combinations of TOFF and TON as TC is constant. The dashed lines are the 
two-state model predictions based on TC, and the solid lines take the finite 
recording length into account (Extended Data Fig. 7d). c, Decomposition of R in 

terms of burst frequency, F, and burst size, B (with R = F × B and definition on top). 
PON determines both F and B, as K and TC are mostly constant. d, Absolute 
derivatives of logTOFF and logTON with respect to PON. Log decomposition is 
convenient as the dominant sources of PON variation become approximately 
additive (as logPON ≈ log PON

1−PON
= logTON − logTOFF). For PON < 1/2, changes 

are primarily driven by TOFF; for PON > 1/2, by TON. e, Absolute derivatives of log F  
and logB with respect to PON. Similar to d, dominant sources of R variation are 
additive (logR = log F+ logB). For PON < 1/3, changes are primarily driven by  
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lines in c and d correspond to the endogenous bursting relationships from  
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Two high-throughput studies conducted in mammalian systems 
used vastly different approaches—randomly integrated GFP reporters 
and single-cell RNA sequencing (scRNA-seq)—but both indicate trends 
that align with our elucidated bursting relationships22,46,47. Extrinsic 
noise related to cell size and the cell cycle47 (which is largely mitigated 
in the highly synchronized early fly embryo), sampling issues like the 
low mRNA capture rate in scRNA-seq and long mRNA dwell times (on 
the order of hours)48, confound quantitative comparisons of bursting 
parameters across studies49,50. However, although one of the studies46 
used a GFP reporter with a 2 h half-life randomly integrated into a 
human cell line, their analysis of fluorescent protein noise suggested 
modulation of burst frequency in loci with low GFP activity and modula-
tion of burst size in loci with high GFP activity. This is consistent with 
what we now observe through an endogenous transcriptional readout.

To extract bursting parameters from the study of the mouse cells’ 
scRNA-seq22, we fitted the steady-state mRNA distributions as in the 
original study, with an additional weak prior on TC. The resulting fits 
are as good as the original ones (marginal loss in likelihood; see Meth-
ods) and provide parameter estimates with plausible physical scales 
(Supplementary Fig. 5a,b). We further corrected for cell size variability 
and low mRNA capture rate in the data49, with minimal impact on the 

estimated parameter trends (Fig. 7b and Supplementary Fig. 5c,d). 
The inferred parameters from scRNA-seq are overall consistent with 
our elucidated bursting relationships. The analysis highlights the 
potential of using parameters derived from live imaging to interpret 
scRNA-seq data in terms of physical kinetic rates, which can be linked 
to underlying molecular events.

Owing to the inherent challenges of extracting bursting param-
eters from protein levels or snapshot scRNA-seq data, we sought live 
transcription measurements of mammalian genes. We reanalyzed time 
traces from 11 endogenous human genes imaged with the MS2 system 
in cell lines9,51. Our goal was to extract a promoter ON time that captures 
initiation, rather than the previously reported ON time encompassing 
both initiation and mRNA dwell time.

We calibrated the signal in absolute units using smFISH measure-
ments of nascent mRNA from one of these genes (TFF1)51 and performed 
a fluctuation analysis to assess measurement noise and mean mRNA 
dwell time. After deconvolving initiation events, we estimated bursting 
parameters for these genes, acknowledging longer mRNA dwell times 
(6–16 min vs 1–2 min in flies), lower temporal resolution (100 s) and 
measurement noise as contributors to uncertainties in these estimates 
(see Methods). The resulting parameters closely match those obtained 
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from the fluctuation analysis performed in the original study on the 
gene TFF1 (ref. 51). Across genes, we find that both the initiation rate 
K and the switching correlation time TC are mainly constant, around 
K = 0.54 ± 0.02 mRNA min−1 and TC = 3.2 ± 0.8 min, respectively (Fig. 7a). 
Although absolute values for K, and to a lesser extent TC, appear to 
differ from fly genes (12-fold and twofold difference, respectively), 
the predictive power of PON is preserved, and the human genes follow 
very similar relationships.

Although the initiation rate K appears largely conserved across 
genes and conditions within a given organism, we observe notable 
differences between the three species we probed (yeast K = 13.2 ± 1.3, 
fly K = 6.2 ± 1.8 and human K = 0.54 ± 0.02; Fig. 7a). In addition to the 
reduced K, mouse and human genes use a lower PON range overall6,9,22,51, 
which leads to smaller transcription rates (Fig. 7b). These differences 
may reflect species-specific metabolic variations52,53. Despite these 
differences in K and PON, the TC values are strikingly similar across spe-
cies. Most importantly, the relationships between bursting parameters 
remain consistent across these datasets, possibly reflecting conserved 
underlying mechanisms.

Discussion
In this study, we developed a method to quantify real-time transcrip-
tional bursting at single alleles in developing early Drosophila embryos. 
The broad range of transcriptional activities in this system enabled us 
to uncover fundamental relationships governing bursting dynamics. 
Specifically, we found a highly restrictive regime characterized by tight, 
asymmetric relationships between TOFF, TON and PON, anchored by a rela-
tively low and largely invariant timescale, TC. Importantly, we show that 
these relationships generalize, as they also align with data from yeast and 
mammalian cells19,22,51, pointing to conserved underlying mechanisms.

Low-activity alleles exhibit longer OFF times and shorter ON times, 
while high-activity alleles (PON > 0.5) show the opposite trend (Fig. 8a,b). 
Changes in activity level are primarily driven by shortening OFF periods 
at low activity and by prolonging ON periods at mid-to-high activity 
(Fig. 8c, left). Correspondingly, transcriptional tuning at the extremes 

of activity—very low or very high—is associated with larger changes in 
burst frequency (F = 1 / (TON + TOFF)). However, although changes in burst 
frequency dominate at low activity, changes in burst size (B = K × TON) 
become the primary mode of modulation at mid-to-high activity 
(Fig. 8c, right). This observation holds even when using an alternative 
definition of burst frequency, F = 1/TOFF  (Supplementary Fig. 5d), 
commonly applied when TOFF > TON

22,46,54. This trend echoes measure-
ments from GFP reporters in human cells, where low-GFP-expressing 
versus high-GFP-expressing loci predominantly modulate burst fre-
quency or size, respectively46, suggesting the potential generality of 
this association between an activity range and a predominant bursting 
parameter modulated.

Our discovery of tight relationships between transcriptional burst-
ing parameters does not depend on fitting specific mechanistic models. 
Instead, we directly identify ON and OFF periods from single-allele ini-
tiation events, which requires careful signal quantification (Extended 
Data Fig. 1). These relationships are further supported by single-allele 
time trace autocorrelation analysis (Fig. 1g and Extended Data Fig. 5d), 
which does not rely on ON–OFF calling. By avoiding model-specific 
assumptions, our analysis remains broadly applicable across diverse 
transcriptional models (Supplementary Fig. 1c–f).

Our approach complements studies that involve fitting detailed 
mechanistic models9,12,17,21,32,33. Although mechanistic modeling is valu-
able for testing a specific hypothesis, our generic analysis aims to map 
the space of used bursting parameters and uncover regularities. These 
regularities, in turn, can guide the design of plausible models linking 
molecular processes to bursting dynamics. Indeed, the relationships 
we identify impose strong constraints on the kinetic parameters of 
mechanistically detailed transcription models (Supplementary Fig. 3). 
For instance, any multi-state model9,12,17,21,32,33 that seeks to explain the 
data must reproduce the observed effective mean ON and OFF periods 
and adhere to the relationships we have elucidated.

The observed relationships do not trivially map to commonly 
invoked molecular processes shaping transcriptional dynamics. This 
suggests novel mechanistic constraints and underscores the need to 
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relationships (see b). b, The bursting relationships extracted from our data 
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uncover their molecular underpinnings. Mathematically, the observed 
regime can be described in two equivalent ways: either as governed by 
PON (with mean activity proportional to PON) and a largely constant and 
low value of TC; or as regulation through both TON and TOFF, where 
1/TON + 1/TOFF is largely constant and mean activity is proportional to 
TON/(TON + TOFF) . Mechanistically, one of these descriptions might 
better capture the underlying molecular events.

Several key questions emerge from this framework: specifically, 
whether there are molecular mechanisms that enable diverse regula-
tory processes to converge on modulating PON as a central parameter; 
whether specific regulatory determinants dominate in distinct regions 
of the parameter space, such as lower versus higher PON; whether there 
is dedicated molecular tuning of TON or TOFF and how the observed 
constancy of 1/TON + 1/TOFF  (= 1 / TC) is achieved; and whether there 
could be a direct molecular implementation to this constancy, or to 
the low value of TC itself.

The measured value of TC ~ 1 min is reliably above our detection 
limit (Methods) yet remarkably small given the theoretically accessible 
parameter space (Fig. 5a). This value also corresponds to the shortest 
ON and OFF durations we observe, occurring at PON values close to 0 or 
1, respectively, as defined by TON = TC/(1 − PON)  and TOFF = TC/PON . 
Notably, it is non-trivial that these periods display similar minimal dura-
tions, as distinct molecular events might govern the ON and OFF states.

The constancy of TC across genes, perturbations and organisms, 
which corresponds to the tight linkage between ON and OFF periods, 
raises intriguing possibilities. It may stem from aspects of the tran-
scriptional environment that have only recently gained appreciation, 
such as the nuclear architecture or the assembly and disassembly of 
transcription machinery components55–60.

Intriguingly, the identified bursting relationships align with a 
simple ON–OFF bursting regime in which periods have a lower limit, 
and any PON is encoded with the shortest possible combination of ON 
and OFF durations, effectively minimizing TON + TOFF (or maximizing 
burst frequency; Extended Data Fig. 10). These assumptions yield a 
narrow parameter space, as we observe asymmetric relationships 
between PON and TOFF or TON and a consistently low TC across the full 
PON range. Thus, this regime captures key features of the data and 
offers a different way of thinking about the mechanisms involved. 
Such a regime may offer functional advantages to developmental 
regulation by enabling fine-tuning of gene expression with minimal 
resource expenditure.

A conserved low TC also corresponds to a reduced noise in gene 
expression as bursts can be effectively buffered by longer mRNA life-
times23 (see Methods). Moreover, transcription remains highly respon-
sive, with gene expression outcomes rapidly adjusting to changes in 
transcription factor inputs (Extended Data Fig. 6l,m). These features 
suggest that such regimes support both stability and adaptability in 
transcriptional control. Thus, similar to other emerging organizing 
principles61–65, the relationships uncovered here point to functionality 
encoded by complex processes and provide a foundation for future 
investigations to explore the underlying molecular mechanisms.
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maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Fly strains and genetic engineering
Drosophila melanogaster fly lines were engineered using a two-step 
CRISPR–Cas9-mediated transgenesis strategy to label endogenous gap 
genes (hb, kni, Kr, gt) with MS2 and PP7 stem-loops for live transcrip-
tional imaging (starting from lines BDSC#78781, BDSC#78782). First, 
CRISPR–Cas9 was used to excise coding and regulatory regions, replac-
ing them with a 2attp-dsRed cassette. Proper deletions were confirmed 
by PCR and immunostaining, and the resultant lines were referred to as 
gene-null backgrounds. In the second step, wild-type sequences with 
appropriate MS2 or PP7 insertions were cloned into 2attB vectors and 
integrated at the null locus using PhiC31-mediated recombination. 
This generated lines expressing intronic or 3′-UTR-tagged transcripts 
(Extended Data Fig. 1a). Additional dual-color constructs (for example, 
interlaced MS2–PP7 and intron + 3′-UTR MS2–PP7) were created to 
assess imaging error and elongation dynamics (Extended Data Fig. 2). A 
variant line lacking the distal hb enhancer was generated by replacing it 
with a lacZ fragment. Similarly, a line lacking the kni distal enhancer was 
generated. See Supplementary Information Section 3 for further details.

Live imaging and embryo preparation
Embryos (both sexes) were collected 2–2.5 h post egg-laying and 
mounted dorsal-side up on a heptane-glue-coated gas-permeable 
membrane, immersed in Halocarbon 27 oil and imaged under a cover 
glass. A custom-built two-photon laser scanning microscope was used 
for live imaging from NC12 to NC14. Imaging was performed with a 
×40 1.3 NA objective using 920 nm and 1045 nm lasers. Each z-stack 
contained 12 slices at 1 μm intervals and was acquired every 10 s. The 
pixel size was 220 nm, and the image resolution was 960 × 540 pixels. 
See Supplementary Information Section 4 for further details.

Image processing and signal quantification
Nuclei were tracked using His2Av–mRFP-labeled histones. 
First, nuclei in each z-stack were segmented using adaptive 3D 
difference-of-Gaussian filtering and watersheding. Temporal track-
ing was then performed using a maximum-overlap Voronoi tes-
sellation across consecutive time points. Candidate transcription 
spots were identified within individual nuclei using 3D median and 
difference-of-Gaussian filtering optimized for low signal-to-noise 
ratios. True spot identification and tracking were based on a Viterbi 
algorithm that maximized the spatiotemporal consistency of spot 
trajectories. Signal quantification was performed by integrating the 
pixel intensity within a fixed ellipsoidal volume centered on the tracked 
transcriptional spot, with dimensions matched to the microscope’s 
point spread function. Local background was estimated from a sur-
rounding shell and subtracted from the integrated signal to isolate 
spot-specific fluorescence. No correction for photobleaching was 
applied, as background fluorescence remained stable over the full 
duration of two-photon imaging (~80 min; Extended Data Fig. 1d). See 
Supplementary Information Section 5 for further details.

Spatiotemporal embryo alignment and data calibration
To minimize inter-embryo variability, all datasets were normalized in 
time and space. Temporal alignment was based on the duration of NC13, 
a robust proxy for developmental speed. Spatial alignment corrected 
for imaging tilt and embryo compression by least-squares minimiza-
tion of expression surfaces. After alignment, residual inter-embryo 
variability accounted for less than 10% of the total variance on aver-
age (Extended Data Fig. 1g), enabling reliable pooling of nuclei across 
multiple embryos. Throughout the study, expression profiles were 
reconstructed by aggregating nuclei into common spatial bins along 
the anterior–posterior axis, with bin sizes of 2.5% and 1.5% egg length 
in NC13 and NC14, respectively. A global calibration to absolute units 
(cytoplasmic units) was performed by matching live-imaging profiles 
with fixed smFISH measurements (Fig. 1c). Calibration accounted for 

gene length, probe position and allele number, allowing accurate 
estimation of nascent transcript counts (Extended Data Fig. 1b,c). 
See Supplementary Information Sections 6.1–6.3 for further details.

Measurement error quantification
Two independent strategies were used to estimate imaging noise 
(Extended Data Fig. 1e). First, a Kr gene with interlaced MS2 and PP7 tags 
was imaged in dual-color mode. The resulting fluorescence intensities 
were compared across channels to model the heteroscedastic meas-
urement error as a function of signal magnitude. Second, a time series 
autocorrelation analysis was applied, leveraging the persistence of elon-
gating transcripts to distinguish biological from imaging noise-related 
fluctuations. Both approaches yielded consistent error models with 
additive and Poisson-like noise components (Extended Data Fig. 1f). See 
Supplementary Information Section 6.4 for further details.

Bayesian deconvolution of transcriptional initiation events
To infer transcription initiation events from live-imaging data, we 
developed a Bayesian deconvolution framework. The observed fluo-
rescence time series, A(t), was modeled as the sum of the true signal, 
G(t), and a noise model, σ(G), accounting for measurement uncertainty 
(see above). The G(t) signal is described as the convolution of discrete 
Pol II initiation events I(t) with a gene-specific kernel κ(t), which defines 
the signal contribution of the MS2 cassette for each nascent transcript 
based on transcript length, or equivalently, on initiation timing assum-
ing constant Pol II elongation rate Kelo that we measured (Extended 
Data Fig. 2; see below). Time was discretized to a 1 s resolution based 
on physical constraints of Pol II loading and elongation. The posterior 
distribution P(I|A) over all possible initiation configurations was esti-
mated using a custom adaptive Markov chain Monte Carlo (MCMC) 
sampler with block updates.

From each sampled initiation sequence I(t), we computed the 
instantaneous transcription rate r(t), defined as the number of initiation 
events occurring within the interval [t −∆t, t] divided by Δt, where Δ 
= 10 s corresponds to our measurement sampling time. This rate cap-
tures the single-allele transcriptional activity as a function of time and 
forms the input to subsequent steps for burst calling and time-resolved 
parameter estimation. See Supplementary Information Section 7.1 for 
further details.

Elongation rate estimation and validation
Elongation rates were estimated from dual-color experiments using 
constructs containing both MS2 (green) and PP7 (red) tags positioned 
at distinct sites within the same gene (for example, intron versus 3′ 
UTR). The observed delay between channels, once calibrated and 
deconvolved, enabled direct inference of elongation speed. To achieve 
this goal, we extended our deconvolution framework to simultaneously 
model the activity of both channels, Ag and Ar, based on a shared Pol II 
initiation configuration I and a single constant elongation rate param-
eter, Kelo (Extended Data Fig. 2a,b). We sampled the posterior distribu-
tion P(I,Kelo|Ag,Ar)  using our adaptive MCMC sampler. The inferred 
elongation rate was 1.8 ± 0.1 kb min−1, consistent across genes and 
embryos (Extended Data Fig. 2d,e). Validation was performed by com-
paring the reconstructed and observed fluorescence in both channels, 
with residuals consistent with the noise model (Extended Data Fig. 2c). 
See Supplementary Information Section 7.1.6 for further details.

Fluctuation analysis of transcriptional activity
To assess transcriptional dynamics at single loci, we estimated the 
conditional distribution P(r|R), where r is the deconvolved single-allele 
transcription rate from individual nuclei and R is the mean transcription 
rate across nuclei within a given spatiotemporal bin. This was done by 
pooling single-allele r(t) values across time points and spatial bins for 
which the associated mean R(t) fell within a specific range (Extended 
Data Fig. 3). The resulting distributions exhibited pronounced 
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overdispersion relative to a Poisson process, consistent with transcrip-
tion initiation governed by burst-like dynamics.

To further characterize the transcriptional dynamics, we com-
puted the autocorrelation function of r(t) for each nucleus and aver-
aged across nuclei within the spatial bin (Fig. 1f and Extended Data 
Fig. 5c). The averaged autocorrelation curves were fit with a decaying 
exponential, from which we extracted a correlated noise amplitude 
ΣAC and a correlation time τAC that reflects the promoter switching 
timescale (Fig. 1g and Extended Data Fig. 5d). Notably, this timescale 
was approximately constant (τAC = 1.37 ± 0.31) across genes, anterior–
posterior positions and nuclear cycles, consistent with an effective 
two-state promoter model with stable switching correlation time 
throughout early development. These results support the modeling 
assumptions underlying the subsequent burst inference. See Supple-
mentary Information Section 7.3 for further details.

Burst inference and parameter estimation
We quantified transcriptional bursting from the single-allele transcrip-
tion rate r(t), computed from posterior samples of deconvolved initia-
tion events I(t). Locus states were identified using a smoothed  
version of r(t), obtained by convolution with a quartic kernel 
κ (t) = 1

Z(w)
exp[−(2t/w)4]  with width w = 50  s. The binary ON–OFF  

signal n(t) ∈ {0, 1}  was then defined by thresholding the smoothed  
trace above rb = gb/w, where gb = 2 (Fig. 2a). This corresponds to detect-

ing bursts as periods with at least two initiations within the smoothing 
window. Burst calling was applied to all MCMC samples of I, enabling 
uncertainty in the inferred burst dynamics to propagate through down-
stream estimates.

We computed time-dependent transcriptional parameters by aver-
aging across posterior samples and across single-allele time series within 
a given spatiotemporal bin (Fig. 2b,c and Extended Data Fig. 6k). The 
mean transcription rate R(t) was the average of r(t) across nuclei. The ON 
probability PON(t)  was the fraction of nuclei for which n(t) = 1. The 
 initiation rate during bursts K(t) was the mean of r(t) across nuclei at 
times where n(t) = 1. The mean burst duration TON(t) and inter-burst 
interval TOFF(t) were computed as weighted averages over ON and OFF 
periods across nuclei, with weights inversely proportional to the period 
length, to correct for overrepresentation of longer durations at each 
time point.

Validation was performed using simulated datasets generated 
from various promoter models (two-state, three-state, cycle) with 
known bursting parameters (Supplementary Figs. 1 and 2). Initiation 
time series were simulated and convolved with gene-specific kernels 
to produce synthetic fluorescence signals G(t). The imaging noise σ(G) 
characterized above was then added to match real data. These traces 
were subjected to the full inference pipeline, including deconvolution, 
burst calling and parameter estimation. Recovered time-dependent 
estimates of R(t), PON(t), K(t), TON(t) and TOFF(t) showed strong agreement 
with ground truth across a range of bursting regimes, elongation times 
and noise levels. This analysis confirmed that the method reliably 
recovers time-resolved transcriptional dynamics from noisy, single-cell 
imaging data under biologically realistic conditions. See Supplemen-
tary Information Section 7.4 for further details.

Single gene copy parameter
Owing to early genome replication, each transcriptional spot reflects 
the combined activity of two unresolved sister chromatids. To infer sin-
gle gene copy (SGC) bursting parameters, we transformed the effective 
measurements under the assumption that the two sister chromatids 
behave independently or weakly correlated.

The SGC transcription rate R(1) was computed as half the effective 
rate R. Assuming uncorrelated copies, we transformed the effective 
bursting parameters into their SGC counterpart, obtaining the  
SGC ON probability P(1)ON = 1 − (1 − PON)

1/2 , SGC initiation rate 

K(1)ON = K
2
(1 + (1 − PON)

1
2 )  and SGC switching correlation time 

T(1)C = 2TC/(1 + (1 − PON)
1/2). The SGC mean ON and OFF durations were 

then estimated as T(1)ON = T (1)
C /(1 − P(1)ON) and T (1)

OFF = T (1)
C /P(1)ON, respectively.

This framework was generalized to account for inter-chromatid 
correlation through a coupling parameter η ∈ [0, 1], with η = 0 corre-
sponding to full independence and η = 1 corresponding to perfect 
synchrony (Supplementary Fig. 3). Comparison with empirical tran-
scription rate fluctuations indicated a weak correlation (Pearson’s 
ρ ≈ 0.16) between sister chromatids, justifying the use of single-copy 
parameters derived under near-independence assumptions. See Sup-
plementary Information Sections 7.4.3 and 7.4.6 for further details.

Exploring the generality of bursting rules
To evaluate the generality of transcriptional bursting relationships, we 
compiled parameter estimates from four independent datasets. For 
Drosophila, we extracted bursting parameters from two live-imaging 
studies: one on dorsoventral genes (ush-wt and st2-dpp)16 and one on 
synthetic core promoter constructs21. Parameters were either directly 
obtained or derived from reported ON probabilities and frequencies, 
assuming a two-state model, and are shown in Figs. 6g and 7.

We extracted the mean ON and OFF times for GAL10 under 42 
conditions from a live-imaging study19, and computed the ON probabil-
ity assuming steady state. To estimate absolute initiation rates, we 
calibrated the unscaled burst intensity using a 1 min residence time 
derived from gene length and elongation rate, conservatively adjusted 
for potential transcript retention. Absolute units were obtained from 
smFISH measurements in the –RSC (DMSO) condition, yielding an 
average of 13.2 ± 0.2 nascent transcripts per active site. Given the short 
residence time relative to TON, we assumed nascent mRNAs accumulate 
only during the ON state, yielding a lower-bound estimate of the initia-
tion rate. The resulting parameter estimates are shown in Fig. 7.

For human cells, we reanalyzed single-cell time traces of 11 endog-
enous genes from live-imaging experiments using 24xMS2 cassettes. 
Original data came from two studies that imaged either 3′ UTRs (TFF1)51 
or introns (ten other genes)9, with ∆t = 100 s and trace durations aver-
aging 11.5 h. We implemented a custom background correction by 
estimating each cell’s background mode and dispersion from intensity 
histograms, then applied our deconvolution pipeline to reconstruct 
initiation events. Bursts were called using a smoothing window w = 300 s 
and threshold gb = 1 (see above), consistent with the system’s temporal 
resolution and claimed single-molecule sensitivity. Absolute initia-
tion rates were inferred from estimated signal per mRNA, assuming a 
gene-specific dwell time of ~10 min. Final parameters were averaged over 
time, given the observed steady-state behavior, and are shown in Fig. 7.

Lastly, we analyzed allelic scRNA-seq data from mouse fibroblasts 
and embryonic stem cells. Bursting parameters for each gene were 
estimated from unique molecular identifier count distributions using 
a beta-Poisson model fit by maximum likelihood. We imposed a 
log-normal prior on the switching correlation time TC (centered at 
1 min) to regularize inference and mitigate identifiability issues owing 
to long mRNA lifetimes (median TM, 5.3 h). Physical time units were 
obtained using gene-specific mRNA decay rates. Genes were retained 
only if they passed thresholds on parameter confidence and effective 
burst size, as in the original study. We then extended the framework to 
correct for the low capture rate and extrinsic variability. The resulting 
parameters were integrated in the comparative analysis of bursting 
rules across systems (Fig. 7b and Supplementary Fig. 5). See Supple-
mentary Information Section 7.5 for further details.

Statistical analysis and reproducibility
All modeling and statistical analyses were performed in MATLAB 2023b 
using custom scripts. Parameter inference pipelines were validated 
against simulated datasets with known ground truth (see above), and 
confidence intervals were estimated by bootstrapping. For each of the 
ten experimental conditions, 10–20 embryos were imaged across 
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Nt = 471 time points (covering NC13 and NC14) and Nx = 9–18 anterior–
posterior positions, yielding approximately 200 nuclei per spatial bin. 
Temporal and spatial binning ensured sufficient sampling for accurate 
estimation of higher-order statistical moments, as verified through 
bootstrap-derived confidence intervals.

No statistical method was used to predetermine sample size. Two 
embryos were excluded from the analysis in NC14: hb embryo no. 9 and 
gt female posterior embryo no. 7, both of which exhibited spatiotempo-
ral misalignment consistent with developmental defects. Single-allele 
deconvolution was restricted to spatial bins containing at least 100 
nuclei and to the time intervals [2.5,15] min in NC13 and [2.5,50] min 
in NC14, resulting in Nt = 362 effective time points. These windows 
were selected based on biological constraints: transcription initiates 
only after ~2.5 min, shuts down before mitosis in NC13 (~15 min) and 
becomes slightly distorted in NC14 after 50 min because of morpho-
logical changes preceding gastrulation (around 60 min). Experiments 
were not randomized, as embryos were assigned to conditions based 
on known genotypes from controlled breeding. The investigators were 
not blinded to group allocation during the experiments or outcome 
assessment, as measurements were standardized, identical across 
conditions and not influenced by group assignment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Original movies are available upon request. Full processed datasets 
are provided as source data and are available on Zenodo (https://doi.
org/10.5281/zenodo.15396340)68.

Code availability
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liveburstrulepaper).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Signal calibration, measurement error and embryo-to-
embryo variability. (a) The four trunk gap genes — giant (gt), hunchback (hb), 
Kruppel (Kr), and knirps (kni) — were imaged using MS2/PP7 stem-loop labeling. 
Stem-loop cassettes (black arrow) were inserted in either intronic or 3′UTR 
regions. These genes feature distinct cis-regulatory architectures, differing in 
numbers of promoters, enhancers (colored boxes), and regulatory sequence 
composition (for example, TF binding motifs, core promoter elements).  
(b) Relative calibration unit (left) and relative error (right) for each gap gene 
construct related to Fig. 1c. Calibration of live transcriptional signals to absolute 
units was achieved by matching spatial activity profiles (averaged over nuclei in 
2.5% AP bins during a 5-min window in NC13) with smFISH-based measurements 
(Zoller et al., 2018). (Left) A global calibration unit was obtained from a joint fit 
across all genes (horizontal black line, ±1 s.e. as dashed lines). Individual fits per 
construct (colored circles) are shown as a percentage of the global value. (Right) 
Relative calibration errors remain below 5%, with error bars representing 68% 
confidence intervals. (c) Higher-order cumulants (mean, variance, 3rd and 4th) 
of transcriptional activity from live imaging closely match those from smFISH 
(Zoller et al., 2018). Live data were binned spatially (2.5% AP) and temporally 
(5 min window in NC13), converted from cytoplasmic mRNA units (C.U.) to Pol II 
counts for a 3.3 kb gene. Cumulants were normalized using g0, the intercept of a 
Poisson background (dashed line) and a polynomial fit (solid for live, dotted for 
smFISH). g0 represents the mean number of Pol II on a 3.3 kb gap gene at peak 
activity; it is estimated at 13.6 (live) and 15.2 (smFISH), a 12% difference. The 
higher cumulants versus mean relationships from live imaging and smFISH 
closely match (black solid versus dotted line), confirming the quantitative 
accuracy and proper calibration of our live assay. These independent methods, 
one involving fixation (smFISH), the other gene editing (MS2/PP7), validate each 
other and indicate that our synthetic modifications do not measurably affect 
endogenous transcriptional output. (d) Background intensity is temporally 
stable, showing no bleaching under two-photon imaging. Background levels 

(C.U.) were measured in nuclei from weakly expressing regions (x/L∈[0.48,0.60]) 
across 10 hb-MS2 embryos. The mean background (black line, ±1 s.d., σb = 0.53) is 
stable, with only transient deviations during mitosis due to nuclear envelope 
dynamics (breaking and reformation) affecting MCP-GFP concentration. Outside 
mitosis, it closely matches the overall median (red dashed line), confirming the 
absence of bleaching under two-photon imaging. (e) Imaging noise was assessed 
via two independent methods. (Left) An interlaced MS2/PP7 cassette in Kr (first 
intron) labeled by MCP-GFP and PCP-mCherry was used to compare red/green 
channel intensities. Deviations orthogonal to the diagonal (slope one) quantify 
the imaging spread σimg, modeled as σ2b + αI , where σ2b is background noise and αI 
represents Poisson shot noise based on mean intensity I. Dashed lines show the 
resulting fit for σ2img, corresponding to ±1 s.d. around the diagonal. (Right) In a 
second approach, transcriptional time series were analyzed to separate 
uncorrelated imaging noise from biological fluctuations that are correlated due 
to the elongation of tagged nascent transcripts. Mean μ(t), variance σ2 (t), and 
lagged covariance Cov(t, t + Δt) were computed across nuclei (1.5–2.5 AP bins) and 
for all measured genes. Imaging variance σ2img estimated as σ2 (t)-Cov(t, t + Δt) is 
plotted as a function of μ(t) for all time points. We estimated average σ2img by 
fitting the data with σ2b + αμ (solid line). Overall, the fractional imaging variability 
σ2img/σ

2 is ~5%. (f ) Both methods in (e) produce consistent estimates of imaging 
noise. The signal-to-noise ratio (SNR = μ/σimg) approaches unity for low 
expression (μ ≈ 1), indicating near single-molecule sensitivity. (g) Fractional 
embryo-to-embryo variability σ2emb/σ

2, calculated as the ratio of inter-embryo 
variance (that is, variance of the mean activity across embryos) to total variance, 
is ~10%, across all gap genes and time points. Since total variance 
σ2 = σ2emb + σ2img + σ2nuc, and imaging (σ2img) and embryo variability (σ2emb) are 
minor components, the majority of transcriptional variability arises from 
nucleus-to-nucleus fluctuations (σ2nuc). Together, (e–g) support using total 
variance σ² as a robust proxy for biologically relevant noise from transcriptional 
bursting.
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Extended Data Fig. 2 | Dual color measurements to validate single-cell 
deconvolution and measure elongation rate. (a) Validation of the kernel 
assumptions underlying the deconvolution of initiation events from single-allele 
transcription time series, using dual-color confocal imaging of hb and Kr. For 
hb (Kr), fly lines were generated with MS2 (PP7) stem-loop cassettes in the first 
intron and PP7 (MS2) cassettes in the 3′UTR. Both lines were visualized using 
MCP-GFP (green) and PCP-mCherry (red). As the two fluorescent signals are 
correlated via the elongation process, the paired time series impose stricter 
constraints on the underlying initiation events, making them an effective test of 
the deconvolution method. Deconvolution is performed jointly on each channel 
(that is, a single train of polymerases must explain both signals) using two kernels 
tailored to the stem-loop positions and satisfying the key assumptions:  
(i) constant, deterministic elongation rate; (ii) no Pol II pausing or dropping in the 
gene body; (iii) absence of co-transcriptional splicing; and (iv) fast termination. 
Additionally, the dual-color configuration allows estimation of the average 
elongation rate based on the time delay between the two signals and the known 
genomic distance between insertion sites. (b) Dual-color signal reconstruction 
from deconvolved single-allele time series (black lines: raw data). The 
transcription rate (gray line with ±1 s.d. envelope) is inferred from a single allele’s 

measured green and red traces. The denoised reconstructed signals (green 
and red, with ±1 s.d.) are obtained by re-convolving the inferred transcription 
rate with the appropriate kernel per channel. The close agreement between 
reconstructed and raw signals supports the validity of the kernel assumptions 
(see c). (c) Distribution of residuals between measured and reconstructed dual-
color signals. Normalized residuals were computed as the difference between 
raw and reconstructed signals (panel b), divided by the standard deviation of 
imaging noise. This was done per allele for hb (N = 2666, blue) and Kr (N = 2594, 
pink). The spread of mean and standard deviation values of these residuals  
(black ellipse, 95% confidence) closely matches the expected distribution for a 
perfect model (dotted ellipse, 95% confidence), indicating good reconstruction 
fidelity. (d–e) Estimated elongation rate Kelo from dual-color measurements.  
(d) Mean elongation rate as a function of AP position, averaged over nuclei from 
10 embryos, for both hb (blue) and Kr (pink) in NC13 (squares) and NC14 (circles). 
Error bars indicate the standard deviation across embryo means. (e) Per-embryo 
elongation rates (symbols and color scheme as in d), with error bars showing 
standard deviation across AP positions. Elongation rate is consistent across 
genes and nuclear cycles, with a global estimate of Kelo = 1.8 ± 0.1 kb/min (black 
line ±1 s.d., dashed).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-allele transcription rate distributions reveal 
common bursting characteristics. (a) Snapshots of the mean transcription rate 
R for each gap gene as a function of AP position during late NC13 and early, mid, 
and late NC14 (specified by time t after mitosis). Colored profiles represent the 
average deconvolved single-allele transcription rate per AP bin (width: 2.5% in 
NC13, 1.5% in NC14), averaged over all nuclei and time points (10 s resolution). 
Black dashed lines show the mean activity (as in Fig. 1c), normalized by the 
effective elongation time (see Extended Data Fig. 4a, Methods). The strong 
agreement between measured and deconvolved profiles supports the validity of 
our approach. Error bars represent ±1 s.d. across embryo means. In total,  
we analyzed Ng = 7 effective genes (accounting for gt sex-specificity and spatial 
regions), over Nt = 362 time points and Nx = 9–18 AP positions, yielding 33′214 
spatiotemporal bins, each averaging ~200 nuclei (single allele per nucleus). 
Remarkably, all gap genes reach a similar peak average transcription rate:  
Rmax = 14.8 ± 0.9 mRNA/min. (b) Fraction of spatiotemporal bins (indexed 
by position x and time t) whose transcription rate distribution P(r|x,t) is 
consistent with the conditional distribution P(r|R), computed by pooling nuclei 
from multiple bins with similar mean rate R (see panel c). We calculated 95% 
confidence intervals for the cumulative distribution of P(r|R), and assessed for 
each bin whether its individual cumulative distribution lay within this envelope. 
This analysis was repeated across four developmental windows: NC13 (6.5 ≤ t min  
after mitosis), early NC14 (7.5 ≤ t <20.5 min), mid NC14 (20.5 ≤ t < 34.5 min), 

and late NC14 (34.5 ≤ t < 48 min), as well as across the full NC14 period (7.5 ≤ t < 
48 min). Within each time window, bins with the same R exhibit highly similar 
distributions (median agreement >80%, dashed line), justifying the pooling. 
However, pooling across the full NC14 window introduces temporal variability, 
suggesting that P(r|R) may evolve with time. (c) Conditional distributions P(r|R) 
of single-allele transcription rates at low ([2.1,3.2]), mid [7.5,8.5]), and high 
[12.8,13.9]) mean transcription rate R (gray bands in a, d), computed over 1-min 
intervals in NC13 (dotted lines) and early NC14 (solid lines). Despite gene identity, 
distributions at a given R collapse, suggesting a shared transcriptional regime. 
All distributions deviate from the Poisson expectation (dashed black line), 
especially at low and mid R, where they exhibit bimodality: a peak near zero (non- 
or weakly-transcribing alleles) and an overrepresentation of high-expression 
alleles. These features are characteristic of transcriptional bursting. (d) Second 
(variance), third, and fourth cumulants of single-allele transcription rates plotted 
against the mean rate R, for NC13 (squares) and early NC14 (7.5 ≤ t < 20.5 min; 
circles). Cumulants are estimated in 1-min intervals. All deviate from the Poisson 
expectation (σ2 = κ3 = κ4 = R; dashed line), except at the lowest and highest R. 
The mean–variance relationship forms a concave parabola, consistent with a 
two-state bursting model where modulation of PON underlies changes in R23. This 
supports a universal bursting mechanism where gap genes transition from fully 
OFF (PON = 0) to fully ON (PON = 1). Vertical gray bands mark low, mid, and high R as 
in panel (a).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Mean transcription rate explains dynamic pattern 
establishment. (a) A simple model to estimate protein accumulation from 
measured mean transcription rates. The mean transcription rate (left column), 
across space and time, is computed by normalizing the measured activity by the 
elongation time and applying a minor correction for the loop-insertion delay 
(<1 min). Horizontal white dashed lines mark the mitotic transition from NC13 
to NC14. Protein accumulation (middle column) is modeled as the convolution 
of the transcription rate with a kernel that captures protein decay, diffusion, 
and a combined time delay due to mRNA export, translation, and nuclear 
import. This model involves three free parameters: protein lifetime, diffusion 
constant, and time delay (see panel b), which were optimized to minimize the 
mean squared error relative to gap gene protein patterns measured via antibody 
staining of carefully staged embryos (right column; Dubuis et al., 2013). Minor 
residual differences between model and experiment can be attributed to staging 
inaccuracies or, in the case of hb, to unmodeled maternal mRNA contributions 
(see c). (b) Estimated model parameters for protein accumulation, as described 
in (a). Parameters were either fitted individually for each gene (colored bars) 
or globally across all genes (dashed lines, used for middle column in a). The 
inferred values are broadly consistent with previous estimates⁶⁷. (c) Quantitative 
comparison between modeled and measured protein patterns shown in (a). 
Absolute errors were computed across the patterns in space and time. The 
generally low errors confirm a strong match between model and experiment. 
For hb, larger discrepancies are observed in the anterior, likely due to maternal 
mRNA contributions not captured by the model. (d) Overall root mean square 

errors (RMSE) between the measured protein pattern (from antibody staining), 
the modeled protein pattern (with either individual or global parameters), and 
the transcription rate data. Protein models (individual: colored, global: light 
gray) yield low RMSE values (mean 0.09), while using the transcription rate 
directly leads to higher error (mean 0.23), mainly due to the time lag between 
transcription and protein accumulation. For reference, the RMSE between live 
and fixed (smFISH) mean profiles (see Fig. 1c) is shown as a dashed line at 0.08. 
(e) Structural comparison of modeled and measured protein patterns, assessing 
pattern shape and features (for example, peaks, boundaries). We computed the 
local spatiotemporal correlation (akin to a structural similarity index without 
luminance or contrast terms) using a 4-AP-bin (6% egg length) and 5-min window 
(black rectangle). Local correlations are generally high (near 1), indicating strong 
structural agreement. Discrepancies mainly occur during the first 20 minutes, 
when few stained embryos were available for accurate staging (see Dubuis et 
al., 2013). As in panel c, hb displays residual differences at later stages due to 
unmodeled maternal input. (f ) Mean correlation across space and time between 
measured transcription rate (dark gray), modeled protein concentration 
(individual: color; global: light gray), and measured protein pattern. Correlation 
values were averaged over the full spatiotemporal pattern using the local 
measure from (e). The modeled protein patterns show high agreement with 
experimental data (mean correlation ≈ 0.9), while transcription rates alone 
correlate less well (≈0.6), consistent with expected temporal lag between 
transcription and protein levels.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Single-allele transcription rate fluctuations reveal key 
bursting characteristics. (a) Interpreting auto-correlation functions using a 
two-state model of transcriptional bursting. In this model (top), a single gene 
copy switches stochastically between OFF and ON states with rates kOFF and kON, 
respectively. While ON, Pol II loads at a rate K(1) and elongates at rate Kelo. 
 The superscript (1) indicates parameters for a single gene copy. The auto-
correlation function (AC) was computed using: a switching correlation time 
T (1)
C = 1/(kOFF + kON) = 2min, a Pol II elongation time τelo = Lg/Kelo = 2 min 

(where Lg is the gene length) and an initiation rate K(1) = 8 mRNA/min. The 
steady-state ON-probability P(1)ON = kON/(kON + kOFF) ranges from 0 to 1 (blue to 
red). While promoter switching introduces temporal correlations in the 
transcriptional activity (‘Activity AC’), these are often masked by elongation-
induced correlations, especially when T (1)

C ≤ τelo (left). However, using 
deconvolved single-allele transcription rates removes elongation effects and 
reveals pure switching dynamics (‘Transcription AC’, right), allowing direct 
estimation of T(1)C  by exponential fitting of the decay. (b) Expected dependence of 
the magnitude of correlated fluctuations ΣAC, on the ON-probability P(1)ON (left) and 

initiation rate K(1) (right), for fixed T (1)
C = 2min. (Left) At fixed K(1), as P(1)ON 

increases, the transcription rate R = 2K(1)P(1)ON (for 2 sister chromatids) increases, 

while ΣAC decreases and vanishes at P(1)ON = 1, consistent with the Poisson 
(constitutive) regime. This trend agrees with data in panel (d). (Right) At fixed 
P(1)ON, increasing K(1) raises both R and ΣAC, contrary to observations. In both cases, 

the dotted line represents the exact solution, well approximated by 
ΣAC = ΔtK(1)(1− P(1)ON)/(1+ ΔtK(1)(1− P(1)ON)), with Δt = 10 s (data sampling 
interval). (c) Auto-correlation functions of single-allele transcription rates 
measured in gap genes, averaged over time and grouped by AP position 
(color-coded). (d) Magnitude of correlated fluctuations ΣAC as a function of mean 
transcription rate R, computed from the gap gene data. All genes collapse onto a 
single curve, indicating a universal trend. As R increases, ΣAC decreases, 
consistent with a transition toward a Poisson regime. The trend is captured by a 
model with a constant K(1) = 8.2 mRNA/min and variable P(1)ON (dashed line; see 
Methods and panel b). (e) Deconvolution reliably recovers correlation times and 
fluctuation magnitudes. Using the Gillespie algorithm, we simulated 
transcription traces under the two-state model for various P(1)ON (from 0.03 to 0.9) 
and T (1)

C  (from 0.5 to 10 min), with 200 simulated nuclei per condition (50 min 
recordings). Following deconvolution, we estimated T (1)

C  and ΣAC by fitting an 
exponential to the transcription AC. Both parameters were recovered accurately 
with minimal bias. Color encodes P(1)ON); dashed line indicates slope 1. (f ) Assessing 
bias from elongation rate misestimation during deconvolution. Simulations were 
repeated as in (e), with T (1)

C = 2 min, and deconvolution performed using 
incorrect elongation rates: overestimated (orange), underestimated (yellow), or 
accurate (blue). While estimates remain broadly consistent, underestimating 
elongation rate introduces greater bias, especially at high P(1)ON.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Direct estimation of instantaneous mean transcription 
parameters for hunchback in NC14. (a) Transcription rate R versus the product 
of initiation rate K and ON-probability PON for hb in NC14 across all time points 
and AP positions (color-coded as in Figs. 2 and 3). As expected, R = K∙PON by 
construction. (b) Leaking rate KL as a function of time in NC14 for all AP positions. 
KL is computed by averaging single-allele transcription rates conditioned on the 
locus being OFF (in contrast to K, computed conditioned on ON allele).  
(c) Leaking rate as a percentage of the initiation rate, KL/K, plotted against 
transcription rate R. Across all conditions, KL remains below 5% of K, indicating 
well-defined bursting and minimal transcriptional leakage. (d) Fraction of 
changes in R attributable to PON, plotted as a function of PON. The black line shows 
d logPON/dPON normalized by d logK/dPON + d logPON/dPON. The dotted line 
accounts for two independent sister chromatids (see panels e–j). Results indicate 
that changes in R are predominantly driven by PON. (e–g) Inferred single-gene-
copy (SGC) parameters for hb in NC14, under the assumption of two independent 
sister chromatids (Methods). Color encodes AP position as in panel (a). (e) The 
SGC transcription rate R(1) and (f ) the SGC ON-probability P(1)ON closely follow their 
effective counterparts R and PON. (g) In contrast, the SGC initiation rate K(1) is 
spatially uniform but varies over time. It decreases by ~38% during NC14, from  
8.0 mRNA/min (early, first dotted line) to 5.0 mRNA/min (late, third dotted line), 
with most of the change occurring between 16 and 34 min (second dotted line at 
6.1 mRNA/min). The resulting mean Pol II spacing, Kelo/K(1) = 303± 73 bp, aligns 
with classical EM estimates (330 ± 180 bp) from Miller spreads⁴¹. (h–j) Temporal 
variation in K(1) and chromatid independence explain the observed dependence 
of K on PON. Colors denote three NC14 windows: early (cyan, 2.5–16.7 min), mid 
(purple, 16.7–34.2 min), and late (magenta, 34.2–50 min). (h) Most variation in K(1) 

arises from time rather than P(1)ON; dotted lines mark the values from panel (g). (i) 

R(1) scales nearly linearly with P(1)ON, with modest deviations explained by temporal 
changes in K(1). Dotted lines show slopes matching the K(1) values from panels (g) 
and (h). ( j) Under the independent chromatid assumption, the effective rate K 
depends on both PON and time-varying K(1). As PON increases, the likelihood of 
simultaneous transcription from both chromatids increases, explaining a ~ 2-fold 
rise in K. The additional time variation in K(1) accounts for a total ~3.2-fold increase 
in K. The predicted relationship (black line) agrees well with observed data, 
supporting the idea that K depends weakly on PON directly. (k) Binarized heatmap 
from Fig. 2c showing instantaneous mean OFF-times (TOFF, gray) and ON-times 
(TON, blue), computed as weighted averages across all nuclei (Methods). Weights 
reflect the inverse of the number of time points within each period. (l) Zoom into 
the first 10 minutes of NC14 from Fig. 2f reveals a rapid transient in PON for hb. A 
vertical dashed line at 7.5 min marks the transition from the post-mitotic 
transient phase to a near steady state, as also shown in panel (c). (m) Evidence for 
an initial out-of-steady-state regime. Beyond 7.5 min, PON ≈ TON/(TON + TOFF) 
holds (gray circles lie along the diagonal; see Fig. 3b). Prior to that (~3–7.5 min), 
strong deviations at all positions (color curves) indicate rapid post-mitotic 
relaxation toward steady state. (n) Distributions and cumulative distributions of 
OFF-times, ON-times, and burst sizes across AP positions (color-coded). These 
are compiled across all alleles and time points at a given position (see heatmaps 
in k and Fig. 2b). Since they reflect non-stationary dynamics (see Figs. 2d-f and 
3a), these distributions are not well-suited for direct interpretation, such as 
assessing deviations from the exponential OFF- and ON-interval distributions 
expected under a stationary two-state model.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Further transcription parameters collapse.  
(a) Kymograph of ON-probability PON for gt transcription in male embryos, shown 
as a function of AP position and time. As with other gap genes, the spatiotemporal 
transcription pattern results from complex regulation of PON. (b) Transcriptional 
parameters for gt in male embryos during NC13 and NC14, plotted as a function of 
PON (orange), overlaid with data from all other gap genes (gray) for comparison. 
(c) Initiation rate K as a function of PON. Data collapse across all gap genes, 
time points, and positions reveals a shared K–PON relationship. Colored points 
correspond to individual genes (color code as in panel b and Fig. 4a–e); gray 
points represent pooled data from all other genes. The corresponding curve for 

hb is shown in Fig. 2h. (d) Near–steady-state relationship between PON and  
TON/(TON + TOFF), shown for all gap genes in NC13 (t ≥ 6.5 min) and NC14 (t ≥ 7.5 min). 
While most data points follow the expected relationship (dashed line), a slight 
but consistent bias appears at the extremes of the PON range (solid line):  
TON/(TON + TOFF) slightly exceeds zero at PON = 0 and slightly undershoots one  
at PON = 1. This bias arises from the finite duration of our recordings (18.4 min 
in NC13 and 50 min in NC14), which imposes an upper bound on the detectable 
lengths of ON and OFF intervals, thereby affecting the estimates near the 
boundaries of PON.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Common bursting relationships across developmental 
time and for single gene copy. (a) Global scatter of effective transcriptional 
parameters as a function of PON, estimated for all gap genes across three 
developmental time windows: NC13 (6.5 ≤ t min) plus early NC14 (7.5 ≤ t < 
20.5 min), mid NC14 (20.5 ≤ t < 34.5 min), and late NC14 (34.5 ≤ t < 48 min). Due to 
the high degree of nuclear synchronization in the blastoderm embryo (with 
respect to the cell cycle), it is possible to assess global temporal changes by 
comparing these windows. The bursting relationships are further refined when 
accounting for temporal changes (color scatter), compared to time-pooled data 
(gray scatter, Fig. 5a). Modest developmental decreases in K and TC (~40%) help 
explain part of the spread observed in Fig. 5a. The origin of these changes 
remains unclear but may reflect overall temporal regulation of the gap gene 
network or maternal-to-zygotic transitions previously associated with mid-NC14. 
(b) Bursting relationships inferred from NC13 and early NC14 data are consistent 
with parameters previously derived from fixed smFISH measurements 23. We 
converted mid-to-late NC13 single gene copy (SGC) parameters from smFISH into 
effective two-chromatid parameters (colored points), with 68% confidence 
intervals. The resulting effective correlation time from smFISH,  
TC = 2.06 ± 0.66 min, is slightly shorter than reported in the original study 
(TC = 3.0± 1.2 min). This discrepancy arises from two corrections: (1) our 
updated elongation rate of 1.8 kb/min (versus 1.5 kb/min previously) reduces  

TC by 17%, and (2) the effective correlation time becomes up to twofold shorter 
than the SGC correlation time T(1)C  at high PON, due to the relationship 
T (1)
C = 2TC/(1+ (1− PON)

1/2), (see Methods), accounting for an additional ~17% 
decrease on average. Overall, the smFISH effective parameters closely verify our 
relationships derived from live measurements (TC = 2.06 ± 0.66 min fixed versus 
TC = 1.25 ± 0.37 min live), albeit with small deviations likely stemming from a 
technical origin (differences in experimental protocol and microscopy, as well as 
limitations imposed by fixed measurements on parameter estimation). These 
small deviations, along with simulations (Supplementary Figs. 1 and 2), suggest 
that the observed data spread is largely attributable to estimation uncertainty 
rather than biological variability. (c) Same as in (a), but showing SGC parameters 
inferred from effective measurements under the assumption of independent 
sister chromatids (see Supplementary Fig. 4 for weakly correlated case with  
ρ = 0.16). The differences between the independent and weakly correlated 
assumptions are minor. Notably, in both cases, the relationship between SGC 
transcription rate R(1) and SGC ON-probability P(1)ON is nearly linear, supporting 
the conclusion that K(1), the SGC initiation rate, is largely independent of P(1)ON. 
Thus, the apparent dependence of effective K on PON arises as an emergent 
property of two-gene-copy measurements, not from intrinsic single-copy 
regulation.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Bursting relationships verified by cis- and trans-
perturbations. (a) Cis-regulatory mutant for kni: deletion of the distal kni 
enhancer. MS2 stem-loops are inserted at the same genomic position in both the 
mutant and wild-type fly lines. (b) Quantification of transcriptional phenotypes 
for kni wild-type and cis-mutant. The transcription rate R as a function of position 
x/L (left) and the kymograph of PON (right) both show a pronounced reduction in 
expression in the mutant. The dotted arrow indicates the time point in the 
kymograph corresponding to the rate profiles on the left. Error bars denote ±1 
standard deviation across embryo means. (c) Transcriptional parameters for the 
kni cis-mutant (olive) collapse onto the corresponding wild-type relationships 
(gray), as observed for the hb cis-mutant (Fig. 6c). Solid black lines show the 
endogenous bursting relationships from Fig. 5a, b. (d) Trans-regulatory mutant: 
kni-MS2 measured in a hb null background. In the absence of hb, the regulatory 
network is altered, which in turn affects the concentrations of input transcription 
factors sensed by kni. (e) Quantification of kni transcription in wild-type and 
trans-mutant. Both the transcription rate R and PON kymograph exhibit a clear 
anterior shift in the mutant. The dotted arrow marks the time point at which rate 
profiles are extracted. Error bars indicate ±1 standard deviation across embryo 
means. (f ) Comparison of kni expression at the protein level for wild-type and 
trans-mutant embryos, using staged antibody staining from Haroush et al., 
202344. While these measurements (solid lines, left) are not fully quantitative, 
they display a similar anterior shift in expression. Predicted protein profiles 
based on measured transcription rates (dashed lines, using the model from 
Extended Data Fig. 4) reproduce the same shift qualitatively. (g–j) Bursting 
parameters, initiation rate K (g), correlation time TC (h), burst size B (i), and burst 

frequency F (j), for hb cis-mutant (cyan), kni cis-mutant (olive), and kni 
trans-mutant (light green) collapse onto the wild-type trends (gray). Solid black 
lines represent wild-type bursting relationships (Fig. 5a–c). (k–p) Predicting 
mutant modulation type based on wild-type-derived bursting relationships  
(Fig. 5a–c). Mutant bursting behavior, whether modulated through TOFF vs. TON, or 
F vs. B, is predicted using look-up tables from wild-type data. (k) Predicted 
modulation type using TOFF and TON. For each mutant–wild-type pair of PON values, 
the expected fold changes T mut

OFF /T
wt
OFF and T mut

ON /T wt
ON are computed based on 

wild-type relationships. The dotted line separates regimes where changes in R are 
driven primarily by TOFF (gray region: | logT mut

OFF /T
wt
OFF| > | logT mut

ON /T wt
ON|) or TON 

(blue region: opposite inequality). Solid black lines bound regions where neither 
change is significant, based on 95% confidence intervals. This framework forms a 
look-up table for predicting modulation type from PON pairs. (l) Same as (k), but 
using burst frequency F and burst size B instead of TOFF and TON. (m) Scatter plot of 
all PON pairs from hb wild-type and cis-mutant at matched spatiotemporal 
positions. Color indicates the predicted modulation type (gray: TOFF-dominated; 
blue: TON-dominated), based on the look-up table in (k). (n) Same as (m), but using 
F and B modulation types from panel (l). (o) Empirical verification of predictions 
in (k). For each PON pair, we compute fold changes in T mut

OFF /T
wt
OFF and T mut

ON /T wt
ON 

from the data (Fig. 6c, d). Nrly all blue points (predicted TON-modulation) lie 
above the diagonal (slope 1, dashed), while gray points (predicted TOFF-
modulation) lie below, yielding >85% prediction accuracy (Fig. 6e). (p) Same as 
(o), using F and B instead of TOFF and TON. Predictions are highly accurate: >95% of 
data points fall in the expected quadrants (Fig. 6g), validating the predictive 
framework.
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Extended Data Fig. 10 | A bursting regime with a minimal ON-OFF cycle 
recapitulated the data. An ON-OFF transcriptional regime, with a lower limit on 
these period durations and a minimal mean burst cycle duration 
TON + TOFF = 1/F  shown in red, closely recapitulates the observed bursting 
relationships in black. The horizontal dotted line corresponds to a lower bound 

of 1.8 min providing the best-fit to the data. An allele at mid-activity level  
(PON = 0.5) minimizes TON + TOFF. Various ON-OFF combinations can yield 
PON > 0.5, but increasing OFF periods prolong encoding PON compared to solely 
increasing ON durations.
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