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The expression of a few key genes determines the body plan of the fruit fly. We
show that the spatial expression patterns for several of these genes scale precisely
with embryo size. Discrete positional markers such as the peaks in striped patterns
or the boundaries of expression domains have positions along the embryo’s major
axis proportional to embryo length, accurate to within 1%. Further, the information
(in bits) that graded patterns of expression provide about a cell’s position can be
decomposed into information about fractional or scaled position and information
about absolute position or embryo length; all information available is about scaled
position, with <2% error. These findings imply that the underlying genetic network’s
behavior exhibits scale invariance in a more precise mathematical sense. We argue that
models that can explain this scale invariance also have a “zero mode” in the dynamics
of gene expression, and this connects to observations on the spatial correlation of
fluctuations in expression levels.

genetic networks | embryonic development | pattern formation | scaling

Closely related organisms can vary widely in size, but variations in their proportions are
much smaller (1–4). A precise mathematical statement of this qualitative observation
would be more stringent: The linear dimensions of all elements in the body plan are
proportional to the linear dimensions of the organism. If such a precise relationship
exists, could it also be present and detectable in the embryo during early development
when the body plan first emerges?

Many living systems exhibit “allometric scaling,” power-law relationships among
different quantities across a well-defined class of organisms (5–7). In some cases, these
relations connect the linear dimensions of different body parts. Nonetheless, exact
spatial scaling in embryonic development—conforming to the mathematical definition
below (Eq. 1)—would be quite surprising, as it would mean that a truly scale-invariant
body plan is determined early and perhaps maintained throughout the many complex
stages of development.

The exploration of complex pattern formation in nature dates back centuries (8).
Today, we understand the mechanisms of pattern formation in a wide range of
nonbiological systems, from fluid flows to crystal growth (snowflakes) and more (9–
13) but none of these examples generate patterns that are invariant to the system size
in the sense that we consider here. Instead, the pattern elements have linear dimensions
set by microscopic parameters, and larger systems exhibit more repetitions of the same
pattern rather than expansion or contraction of pattern elements to match the size of the
system as a whole (14).

In living systems, genetic networks similarly determine patterning at the molecular
level. The pioneering work of Turing (15) on this topic has been extended in many later
models (16–18). Still, the basic structure of Turing’s original equations for biochemical
networks is closely related to models of the inanimate pattern formation. If we take these
analogies literally, we would predict that taller people should have more vertebrae, which
is obviously wrong. Can a given genetic mechanism succeed in tying the length scales of
molecular events to the macroscopic scale of the body plan?

Here, we use the first few hours of development in the fruit fly as an example where
we can define and test a precise notion of scale invariance along the anterior–posterior
(AP) axis. We focus on protein concentrations as the functional output of the relevant
genetic networks and follow the flow of information about a cell’s position as it flows
through three layers of the network, from maternally deposited morphogens to the gap
genes to the pair-rule genes (19–21).

In the spirit of earlier work (22–26), we start by analyzing discrete positional markers,
such as the stripes in pair rule-gene expression, and find that their positions vary in
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proportion to the length of the embryo with better than
1% accuracy (27). We then take a more general approach,
decomposing the information carried by graded patterns of gap
gene expression into information about the absolute position x
along the AP axis and information about fractional or scaled
position x/L, where L is the length of the embryo. All available
information is about scaled position along the AP axis, with <2%
errors.

These results provide strong evidence for scaling in a precise
mathematical sense for both the gap genes and the pair-rule
genes. But at least one of the maternally deposited morphogens,
Bicoid (Bcd) (28, 29), does not show any sign of scale invariance
within genetically uniform populations (1, 22, 30). As in well-
understood, nonbiological pattern-forming systems, models of
the Bcd profile have a length scale � set by the underlying
molecular parameters (protein diffusion and degradation); in
this picture, the spatial profile of concentration CBcd(x) ∼
exp (−x/�), and the question of scaling is whether � ∝ L.
Here, using the more general information-theoretic approach,
independent of the functional form, we find that Bcd expression
does not scale with the embryo length. Taken together, our results
suggest that scaling in the gap genes is an emergent property of
the network, and it seems natural to assume that scaling in the
pair-rule genes is inherited from their gap gene inputs.

Even though scale invariance is a statement about spatial
properties of the gene expression patterns, we argue theoretically
that true scale invariance places specific requirements on network
dynamics, independent of molecular details: The network must
have a “zero mode.” We can decompose the spatial variations
of gene expression into modes, analogous to normal modes in
a mechanical system, that relax independently as the system
approaches its steady state. A zero mode has a zero decay rate,
resulting in nonlinear decay even when it is very near the steady
state. Zero modes also are easily perturbed by noise, leading to
system-wide fluctuations and long-range spatial correlations, as
observed experimentally in the embryo (25, 31, 32) and in more
detailed models (33, 34).

Testing for Scaling

There is a general idea that the concentrations of particular
molecules—morphogens—determine the fates of cells in a
developing embryo (35). Since fates are tied to cell positions,
morphogen concentrations must carry information about posi-
tion along the body axes. In the early fly embryo, the identities
of all the relevant morphogens are known, and their rich spatial
patterns are established before cell membranes form and before
cells make large-scale movements (36). This brings the system
close to the idealization of molecules diffusing and interacting in
a single large container.

We focus on pattern formation along the AP axis. We will
analyze measurements of gene expression as a function of absolute
position x (in μm) along the AP axis of length L. Multiple
morphogen species, indexed by i, have concentration profiles
described by continuous functions gi(x; L), assuming we ignore
the discreteness of cells. This notation highlights that profiles can
vary with embryo size L.

True scale invariance means that the concentration of mor-
phogens depends solely on position relative to the embryo’s
length, xs ≡ x/L:

gi(x; L) = Φi(xs). [1]

If there is a fixed map from morphogen concentrations to cell
fates, this scaling behavior would ensure that cells adopt a fate

based on their relative position x/L, rather than on x and L
separately.

The most straightforward way to test for scale invariance in
a pattern is to identify a specific point in the spatial pattern
and measure its position as a function of the embryo length L.
We emphasize that scale invariance is not just about positional
markers adjusting to the embryo length in absolute terms; it
requires that this adjustment is exactly linear with zero intercept,
as defined in Eq. 1.

To illustrate, consider a gene expression pattern gi with a single
peak along the AP axis, where the peak is at position x = xp. We
can then write gi with the origin at xp:

gi = gi(x − xp; L). [2]

Then, scale invariance as defined in Eq. 1 requires

gi(x − xp; L) = Φi

(
x − xp
L

)
. [3]

To remove all dependence on L we must have

xp = 〈fp〉 · L + noise, [4]

where fp is the fractional or scaled peak position, 〈· · · 〉 denotes
the average over many embryos of different lengths, and noise
accounts for variation across embryos. This concept extends to
concentration profiles with multiple peaks, as seen with the pair-
rule genes (Fig. 1 A and B).

Embryos in an inbred laboratory stock fluctuate in length
with a SD of �L/〈L〉 ∼ 4% (37, 38); see also SI Appendix,
section A. But we know that morphogens in the early fly embryo
carry enough information to specify scaled positions with ∼1%
precision along the AP axis (39, 40). To reconcile these numbers,
it seems that positional signals have to scale with embryo length,
but we must be careful.

Imagine a hypothetical embryo where a morphogen profile
peak (or another characteristic marker) is perfectly placed at an
absolute position xp relative to the anterior pole. The only source
of variation of the measured relative position fp ≡ xp/L across
a population of such hypothetical embryos is the variation in L.
Assuming the position xp is “anchored” to the anterior (A) of the
embryo, as it could be for a nonscaling pattern, the variance of fp
is given by

�2
fp(A) ≡ 〈(�fp)2

〉 = 〈xp〉
2

[〈(
1
L

)2
〉
−

〈
1
L

〉2
]

. [5]

Thus, the SD of the relative position �fp depends on the position
of the marker xp relative to the embryo anterior. The fractional
error in position is, in first order:

�fp(A) ∼
〈xp〉

〈L〉
·
�L
〈L〉

.

For a marker that is, on average, a quarter of the way from
the anterior to posterior (〈xp〉 = 0.25〈L〉), fluctuations will
be �fp(A) ∼ 0.01 even without scaling. Similarly, if we have
a marker anchored at some fixed absolute position relative to
the posterior (P), the variance in relative position will linearly
decrease toward the posterior:

�fp(P) ∼
(

1−
〈xp〉

〈L〉

)
·

(
�L
〈L〉

)
. [6]
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Fig. 1. Precise scaling of pair-rule stripes in the Drosophila embryo. (A)
Bright-field image overlaid with fluorescent antibody staining for Eve protein
(fuchsia), focusing on the mid-sagittal plane with the dorsal side up. (Scale
bar, 100 μm.) (B) Expression of Eve in the second half of nuclear cycle fourteen
(nc14). The solid line is the mean, and the shaded region is the SD across
Nem = 108 embryos in a time window between 30 and 60 min from the
start of nc14. The Inset shows a single nucleus with a white square (width
0.01 L) used to average intensities. (C) Eve expression profiles as a function of
relative position along the body axis for 12 time bins during nc14, as indicated
by color. (D) Linear dynamics of Eve peak positions during nc14, fit to Eq. 11.
(E) Absolute positions of the dorsal Eve stripes measured at a distance x
from the anterior pole. There are seven Eve stripes as shown in (B). Each
point corresponds to a position of the fitted stripe center in one embryo,
and stripe order is indicated by color. Absolute positions are corrected for
time t0 = 45 min, as in Eq. 12 and as shown in (D). (F ) SD of scaled stripe
positions as a function of mean position for three pair-rule genes and for the
cephalic furrow (CF; see SI Appendix, section C). Error bars for �f are estimated
from bootstrapping. Black curves with red shading (bootstrapped errors) are
estimates of precision based on anchoring in Eqs. 5–7, and d is the spacing
between neighboring cells.

We can also imagine cells combining anterior and posterior
signals to reduce error, resulting in

1
�2
fp(A, P)

=
1

�2
fp(A)

+
1

�2
fp(P)

. [7]

With �L/〈L〉 ∼ 0.04, fluctuations in relative position could
be less than ∼1.4% along the entire AP axis, even without a
scaling mechanism. Therefore, convincing ourselves that pattern
formation is truly scale invariant requires precise measurements
and depends on the system itself operating at high precision.

It is intuitive to think about scaling as the proportionality
of a small set of marker positions to embryo length, as in
Eq. 4. However, it should be possible to test the scaling of
the entire morphogen profile, as in Eq. 1, more directly and
at each position xs in the embryo. To achieve this, we need a way
to compare expression profiles in embryos of different lengths.
Since morphogen profiles are noisy, expecting the exact equality
of two functions across all values of xs is unrealistic. Fortunately,
the noise level itself provides a useful metric for comparison. To
make this precise we use an information theoretic formulation.

The statement that morphogen profiles depend on x and
L means that the concentrations of these molecules provide
information about the underlying positional variables. As first
shown by Shannon, the intuitive notion of “provide information”
has a unique mathematical formulation (41–43). If we write the
gene expression levels as g ≡ {gi} then the information that
some particular molecular signals provide about absolute position
and embryo length will be I (g→ {x, L}). But if we ask about
the average of this information over all the possible signals that
cells in the embryo can see, this average is symmetric; generally
I (a→ b) = I (b→ a), and this is referred to as the mutual
information (41–43):

I(g; {x, L}) =
∫

dg
∫

dx
∫

dL P (g|{x; L})

× P(x, L) log2

[
P (g|{x, L})

P (g)

]
bits, [8]

where for more compact notation, we write dg =
∏

i dgi.
The (conditional) distribution P (g|{x, L}) is the probability of
finding the set of morphogen concentrations {gi} at position x in
an embryo of length L; this distribution has a peak near the mean
gene expression profile and the width around this peak quantifies
the noise in the expression levels. The (marginal) distribution
P (g) is the probability of finding these concentrations averaged
over all values of x and L; and P(x, L) is the distribution of po-
sitions and lengths. This information is mutual because the con-
centrations of morphogens provide cells with information about
position, and specifying position and length allows us to predict
the concentrations. Importantly, information depends on both
the mean spatial profiles of the morphogens and their noise levels.

True scale invariance means that all of the information
conveyed by morphogens is about the scaled position x/L:

I(g; {x, L}) = I(g; x/L) (perfect scaling). [9]

In other words, specifying the scaled position is enough to predict
morphogen concentration; no extra information is gained by
knowing x and L separately. Conversely, we can separate the
total information into two components: the mutual information
between the relative position x/L and gene expression g, and an
increment that describes the deviation from scaling:

I(g; {x, L}) = I(g; x/L) + ΔI, [10]

With samples from a sufficiently large number of embryos, we
can make a reliable estimate of ΔI . The smaller the fraction
ΔI/I(g; x/L) the closer the system is to a mathematical ideal
of scaling. More explicit expressions for ΔI are developed in SI
Appendix, section B, and applied to the experiments below.
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We emphasize that true scale invariance, corresponding to
ΔI = 0, is an extreme condition. Different levels of evidence
for scaling in embryonic development have inspired models in
which competing mechanisms can provide some cancellation of
the intrinsic length scales determined by diffusion constants and
reaction rates (44–47). These models typically allow for scaling
in the position of a single discrete positional marker (e.g., the
middle of the embryo), or for approximate scaling across a larger
segment of the relevant axes. True scale invariance would require
new dynamical mechanisms.

Stripes and Boundaries

In the early fly embryo, information about position along the
AP axis flows from maternal morphogens to the network of gap
genes and then to the pair-rule genes (21). The pair-rule genes
are expressed in striped patterns that preview the segmented body
plan in the fully developed organism; these stripes are visible
within three hours after the egg is laid (Fig. 1A–C ). The positions
of pair-rule stripes are a clear example of the positional markers
discussed above.

Here we analyze the spatial profiles of gene expression for three
of the pair-rule genes—eve, prd, and run—for which we have a
large dataset of precise measurements thanks to the existence
of high-quality antibodies (40). Each of these genes fulfills a
primary role in establishing the segmented body plan of the
fly, each is expressed in seven stripes, and these stripes alternate
Prd/Eve/Run over much of the embryo (0.33 ≲ x/L ≲ 0.8).
Gene expression is measured using fluorescent antibody staining
of the corresponding proteins in more than one hundred
embryos, fixed during nuclear cycle 14 (nc14), i.e., 2 to 3 h
after oviposition. These measurements provide snapshots of the
protein concentrations in each embryo, and we can mark time
in nc14 to ∼1 min precision by measuring the progress of the
cellularization membrane (39); this timing precision is crucial in
testing for scaling (27).

Pair-rule stripes gradually appear in the second half of nc14.
Once visible, it is straightforward to localize the position of each
stripe xi (27, 40). Stripe positions vary systematically (23, 48–51)
and are well described by a linear function of time

xi(t)
L

=
xi(t0)
L

+ si(t − t0), [11]

as shown for the Eve stripes in Fig 1D. To compare data from
embryos fixed at different times, we adjust stripe position to a
reference time t0 = 45 min,

xi(t0)
L

=
xi(t)
L
− si(t − t0). [12]

We apply this same procedure to Prd and Run stripes, which
appear slightly later in development.

Fig. 1E shows that the stripe positions xi measured from the
anterior pole are proportional to the length of the embryo L.
More precisely, if we fit these linear relations then intercepts
are zero and slopes are equal to the mean scaled positions, as
in Eq. 4, with error bars <1% (SI Appendix, section C). This
provides prima facie evidence for scaling of the pair-rule stripes,
reinforcing the conclusions of earlier work (22–25).

We can go beyond the mean behaviors to look at fluctuations
around these means. For each stripe i in each embryo �, we can
write

x�i
L�

= 〈fi〉+ �f �i , [13]

where 〈· · · 〉 now is an average over all the embryos in our sample.
The variance of the relative position is �2

fi = 〈(�fi)2
〉, and Fig. 1F

shows that �fi ≤ 0.01 for all 21 pair rule stripes that we measure.
This is consistent with previous measurements, and with the
information content of the gap gene expression patterns that
feed into the generation of pair-rule stripes (40, 52), but earlier
work did not address scaling explicitly.

As a caution, we note that the observation of scaling in fixed
embryos would be trivial if variations in embryo length were
dominated by shrinkage during fixation. AcrossNem = 609 fixed
embryos used for the analysis of gap genes (below) we find a mean
length 〈L〉fix = 455 μm, while across Nem = 610 live embryos
(below) we find 〈L〉live = 490 μm. Hence, shrinkage with fixation
is a bit less than 10% across many different experiments. But the
variations in length are almost the same, (�L/〈L〉)fix = 0.038
vs. (�L/〈L〉)live = 0.037. The small extra variance in the length
of fixed embryos cannot explain the scaling behavior that we
observe.

Fig. 1F also shows that the fluctuations in scaled position are
smaller than the bound on mechanisms without explicit scaling.
This bound, Eq. 7, calculated as the error in positioning due
to variation in embryo length, is very tight because of the small
variance in lengths (black curve with red shading in Fig. 1F ).
Demonstrating that a point in the expression pattern scales
requires extreme precision in the measurement and the embryo’s
functional behavior. Notably, all pair-rule stripe positions scale
better than this bound across a broad stretch of the central AP axis.

The importance of precision, both experimental and biolog-
ical, is clear when contrasting the results from pair-rule genes
with the position of the cephalic furrow—a single row of cells
marking the end of nc14 and separating the head from the
body (36, 53). Our analysis shows that the position of the
cephalic furrow, xCF, scales with L as a straight line with zero
intercept (SI Appendix, section C), and the positioning error of
the cephalic furrow is just over 1%, both consistent with the
idea that the furrow is determined by pair-rule gene expression
(54). Because of experimental constraints in tracking single cell
row movements (53), we cannot exclude the possibility that a
significant component of this error is measurement error. The
result is that the precision of the cephalic furrow measurement
is not good enough to provide evidence for scaling, since it is
(barely) consistent with the variance that can be reached by
mechanisms that do not involve scaling, from Eq. 7; see the
black star in Fig. 1F.

The pair-rule stripes are shaped by input from the gap genes
(55), and it is natural to ask whether the scaling behavior that
we observe is inherited from these inputs. It has been evident for
a long time that the gap genes control the pair-rule genes in a
dose-dependent manner (56). But we now know that the extent
of this control is even more striking: The positional information
encoded by the gap genes is optimally decoded by the pair-rule
genes (40, 52, 57). As a first step in analyzing the scaling of the
gap genes, we use the boundaries of the expression domains as
positional markers (Fig. 2 A–D) and follow the same ideas as for
the pair-rule stripes.

Previous experiments have measured the expression profiles of
the gap genes (40), staining Nem = 609 fixed embryos in nc14
with fluorescent antibodies directed at the proteins encoded by
these genes (Fig. 2 A–D). We define expression boundaries as
the positions where the concentrations are half their maximum
value as in ref. 39, and we correct their relative positions to
t0 = 45 min as above. Fig. 2E shows that all thirteen gap gene
boundaries defined in this way have absolute positions that scale
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Fig. 2. Precise scaling of gap gene expression boundaries. Expression
profiles of (A) Hunchback (Hb), (B) Giant (Gt), (C) Knirps (Kni), and (D) Krüppel
(Kr), based on immunofluorescent staining (SI Appendix, section D). Means
(solid lines) and SDs (shading) across embryos aligned by scaled position
xs . Vertical lines indicate the mean positions of expression boundaries and
a small peak in Kni. (E) Absolute position of all gap gene boundaries as
a function of embryo length. Four gap genes are color-coded as shown
in the legend. There are multiple expression domain boundaries per each
gene as shown in (A–D), some overlapping. The dashed black line indicates
the position of the posterior of the embryo. Boundary positions are time-
corrected to t0 = 45 min, as with the stripe positions in Fig. 1D. (F ) SD of
scaled boundary positions as a function of mean position for all 13 markers.
Error bars for �f are estimated from bootstrapping. Black curves with red
shading (bootstrapped errors) are estimates of precision based on anchoring
in Eqs. 5–7, and d is the spacing between neighboring cells. Horizontal dashed
lines denote the distance d and half-distance d/2, between neighboring
nuclei. The dotted gray line indicates 1% precision.

precisely with embryo length, as with the positions of the pair-rule
stripes. The accuracy of this scaling again is better than ∼1%,
and this precision is better than the limiting performance of
mechanisms that do not have some explicit sensitivity to embryo
length (Fig. 2F ). For the gap genes, this gives more data points,
covering almost the entire AP axis (0.1 L < x < 0.86 L).

In summary, stripes and boundaries of gene expression in the
early fly embryo provide discrete positional markers, and the
absolute positions of these markers are proportional to the length
of the embryo. This is consistent with previous observations
(22–25), but the precision of the scaling that we observe here is
surprising. This suggests that the underlying genetic network
exhibits true scale invariance, which we now test using the
information decomposition in Eq. 10.

Absolute vs. Scaled Positional Information

The concentrations of morphogens provide cells with infor-
mation about their position in the embryo. This “positional
information” (35) can be measured in bits if we have access

to data on the mean and variability of spatial profiles for the
concentration of the relevant molecules (21). Previous work has
shown that the local expression levels of individual gap genes
convey roughly two bits of information about position, twice
what is possible in a model of on/off expression domains (52, 57).
Together the four gap genes provide ∼4.2 bits, sufficient to
specify positions with ∼1% accuracy along the AP axis, as seen
above. However, these earlier analyses assumed implicitly that
information is about the fractional or scaled position. Is this
correct?

The key to separating information about scaled vs. absolute
position is to compare the variance in morphogen concentrations
at a scaled position xs depending on whether we constrain the
length of the embryo as in Eq. 10 (SI Appendix, section B).
Qualitatively, if there is perfect scaling then fixing the embryo
length of all embryos in the population would not add any
information with which to predict the morphogen concentration.
Since information is mutual this would mean that all the
available information is about the scaled position. To test this
quantitatively in the context of the gap genes, we have assembled
data on Nem = 301 embryos, in each of which we have reliable
simultaneous measurements on the spatial profiles of expression
in all four gap genes (SI Appendix, section D).

Fig. 3A shows the spatial profile of Hb as a function of
scaled position along the AP axis. At each scaled position xs,
the distribution of expression levels can be well approximated by

A

B
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1.5
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Probability density
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Fig. 3. Expression of Hb in scaled coordinates. (A) Mean concentration of
Hb, 〈gHb(xs)〉, vs. scaled position (solid line, as in Fig. 2A) and the conditional
distribution P(gHb|xs) around this mean (shading). Intensity bin size is 0.05
maximum 〈gHb〉. (B) A slice through the conditional distribution at xs = 0.47
(dashed black lines) compared with distributions estimated from embryos
in narrow bins of length, PL(gHb|xs) (colored lines). Deviation from scaling
would be obvious if the distributions from the subsamples were narrower
than the distribution across all embryos. Lengths were binned in 5 bins with
an equal number of embryos in each, such that each bin contains about 60
embryos with variations in L of less than 1%. Mean lengths in each bin are
indicated at the Bottom of each panel. Probability distributions of gHb are
estimated using a kernel density estimator with a Gaussian kernel that has
width �g = 0.07×maxxs 〈gHb(xs)〉.

PNAS 2024 Vol. 121 No. 46 e2403265121 https://doi.org/10.1073/pnas.2403265121 5 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 P
R

IN
C

E
T

O
N

 U
N

IV
 L

IB
R

A
R

Y
; A

C
Q

U
IS

IT
IO

N
 S

E
R

V
IC

E
 P

E
R

IO
D

IC
A

L
S 

on
 J

an
ua

ry
 3

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
86

.2
45

.1
76

.5
0.

https://www.pnas.org/lookup/doi/10.1073/pnas.2403265121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2403265121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2403265121#supplementary-materials


BA Hunchback All gap genes combined

Fig. 4. Near zero deviation from perfect scaling, in bits. (A) The extra information ΔI that Hb expression levels carry about absolute rather than scaled position,
defined by Eq. 10 and evaluated from Eq. 14. Estimates are based on random choices of Nem embryos out of the full experimental ensemble (points; circles
show means with SDs), and the extrapolation Nem →∞ follows the methods of SI Appendix, section E (red line). The result is ΔI = 0.00 ± 0.008 bits (red circle
with error bar). (B) The extra information ΔI conveyed by all four gap genes together, defined as in (A) by Eq. 10 but now evaluated using Eq. 15. Symbols as in
(A); the result is ΔI = 0.038± 0.039 bits. Error bars are larger because we are analyzing a multidimensional code, but there still is no significant difference from
ΔI = 0.

a Gaussian (52); an example is the dashed line in Fig. 3B (SI
Appendix, section D). The width of this distribution P(gHb|xs)
characterizes the noise in gene expression and sets limits on the
information that cells can extract from these expression levels to
determine their position and hence their fate. But we can ask
what happens if we look only at embryos in a narrow range of
lengths around some particular L; Fig. 3B shows that all these
distributions PL(gHb|xs) are essentially the same and the same as
the full distribution P(gHb|xs). This is a hint that the expression
level gHb is tied to the scaled position xs = x/L independent of
the embryo length L, pointing toward precise scaling.

To test for precise scaling we want to estimate ΔI in Eq. 10,
the difference between the total positional information and
the information about the scaled position. As explained in
SI Appendix, section B, this is related to the difference in
entropy between the distributions PL(gHb|xs) and P(gHb|xs). In
general, ΔI is difficult to estimate and even more difficult if
we include all four gap genes. But things simplify enormously
if we can approximate the distributions as Gaussian, and this
approximation is well supported by the data (SI Appendix,
section D). The result for a single gene is then

ΔI =
1
2
〈log2[�

2
g (xs)]〉xs −

1
2
〈log2[�

2
g (xs|L)]〉xs ,L, [14]

where �2
g (xs|L) is the variance in concentration at scaled position

xs across embryos of length L and �2
g (xs) is the same variance

computed across all embryos.
Applying Eq. 14 requires estimating the relevant variances

and also making bins along the xs and L axes. For the scaled
position, we choose bins of size Δxs = 0.01, consistent with the
precision that we see in Figs. 1 and 2. To sample the range of
embryo lengths we use Nbins = 5, 10, 15, or 20 adaptive bins,
and find the same results in all cases (SI Appendix, section E). As
is well known, estimates of entropy or information are subject
to systematic errors (43, 58). In the present case, if we substitute
estimates of the variances into Eq. 14, we find a nonzero result
for ΔI . But suppose we include different numbers of embryos in
our analysis. In that case, we see that our estimate of ΔI depends
on 1/Nem as expected theoretically (43, 58), and having seen
this predicted dependence, we can extrapolate Nem → ∞. In
particular, if we shuffle the data so that the true ΔI = 0, then
our estimation procedure returns a random number with zero
mean and SD equal to our quoted error bar, demonstrating that

we have control over the systematic errors. These now standard
analysis methods are reviewed in SI Appendix, section E.

Results of this analysis for Hb are shown in Fig. 4A. Using
all Nem = 301 embryos in our dataset produces a very small
estimate of ΔI , but even this is exaggerated by systematic errors
as we see by changing Nem. Our best estimate extrapolates to zero
as Nem → ∞, with an error bar smaller than 0.01 bits. When
we repeat the same analyses for each of the other gap genes (i.e.,
Gt, Kni, and Kr), we get the same result (SI Appendix, section E
and Fig. S8).

We can generalize this analysis to consider all four gap genes
simultaneously. Now the role of the variance in Eq. 14 is played
by the covariance matrix Σ of the fluctuations,

ΔI =
1
2
〈log2 [||Σ(xs)||]〉xs −

1
2
〈log2 [||Σ(xs|L)||]〉xs ,L. [15]

Here ||Σ(xs|L)|| is the determinant of the covariance matrix
describing fluctuations in the expression levels of all four genes at
scaled position xs across embryos of length L, and Σ(xs|L) is the
covariance computed across all embryos. Because we are looking
at higher dimensional variations, the impact of the finiteness of
our dataset is larger, but again, we see the predicted dependence
on 1/Nem and can extrapolate to give ΔI = 0.038± 0.039 bits
(Fig. 4B). Once again this is consistent with ΔI = 0: There is no
significant evidence for encoding of information about absolute,
as opposed to scaled position.

Although the number of bits has meaning, it is useful to express
the deviation from perfect scaling as a fraction of the information
available about scaled position (52, 57),

I(g→ {x, L})− I(g→ x/L)
I(g→ x/L)

= 0.009± 0.009. [16]

Thus gap gene expression patterns exhibit perfect scaling within
experimental error, and the upper bound of this error is less
than 2%. We emphasize that this is a statement not just about
positional markers but about the entire range of graded spatial
variations.

Maternal Inputs Are Not Scale Invariant

Having observed scaling in the pair-rule stripe positions and
followed this back to the gap genes, it is natural to ask whether
we can trace the scaling behavior of the patterning system to the
maternal inputs. Among the three maternal gene systems that
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CA B

Fig. 5. The maternal morphogen Bcd does not scale with embryo size. (A) Measurements of Bcd concentration in Nem = 582 live embryos are grouped into
eight classes by embryo length L and averaged. There is only one global normalization, so this shows that absolute concentrations have the same dependence
on absolute position x across all classes. (B) The same data plotted vs. scaled position xs = x/L. Profiles separate, providing evidence against scaling. (C) Extra
information ΔI that Bcd concentration provides about absolute vs. scaled position, defined by Eq. 10 and evaluated from Eq. 14. Symbols as in Fig. 4, but the
extrapolation now leads to a significantly nonzero value of ΔI = 0.1± 0.02 bits. Data from ref. 53.

drive patterning along the AP axis of the fly embryo (anterior,
posterior, and terminal), much attention has been given to the
principal anterior morphogen Bcd (28, 29). The protein is at high
concentration in the anterior, and there is a nearly exponential
decay of concentration with distance toward the posterior; one
can monitor the dynamics of Bcd concentrations quantitatively
in live embryos using fusions with the green fluorescent protein
(37).

Comparison across several species of dipterans with different
egg lengths (divergence in evolutionary time 50 to 60 mya) shows
that the mean length scale of this exponential decay varies in
proportion to the mean length of the embryo (1). However,
previous work was inconclusive about whether the exponential
decay is proportional to embryo length L within each population
of the different species. This question has remained open partially
because of the small fluctuations in L that occur naturally
and demand very precise measurements. Insertion of bcd genes
from other species into Drosophila melanogaster produces protein
concentration profiles with length scales appropriate to the host,
but these are not sufficient to rescue the embryo from deletion
of the native Bcd (59). These results emphasize the subtlety of
comparison across species and the impact of genetic variations,
which lead us to reexamine the behavior of Bcd profiles across
a large number of live embryos drawn from the same inbred
laboratory strain used in the analysis of gap and pair-rule genes.

Fig. 5 analyzes Bcd profiles from Nem = 582 live embryos
(53). Measurements are taken during a small temporal window
in nuclear cycle fourteen (37), and the only normalization (as
with the gap genes) is to subtract a common background level
from all the embryos and set the highest mean concentration to
one. When we group the embryos into eight classes based on their
length L, the average concentration profiles in all groups are the
same when plotted vs. absolute position, except for small effects
at the posterior pole (Fig. 5A). If we plot vs. scaled position,
the different groups of embryos separate significantly (Fig. 5B),
providing direct evidence against scaling.

The nearly exponential form of the Bcd profile, CBcd(x) ∼
exp(−x/�), makes it tempting to test scaling by asking about
the variation of the length scale � with embryo length L. But
the information-theoretic approach introduced above allows us
to test for scaling—or the absence of scaling—in a way that
does not depend on fitting a model. The result, in Fig. 5C, is
that the positional information carried by Bcd has a significant

nonzero value of ΔI = 0.1 ± 0.02 bits. While this may seem
small, it corresponds to the ∼4% variation in embryo length.
The conclusion is that the maternal morphogens do not scale,
consistent with earlier suggestions (22).

We emphasize that the absence of scaling in the maternal
morphogen Bcd should not in any sense be interpreted as
noise. Indeed, absolute concentrations of Bcd protein are highly
reproducible across embryos and this can be traced to highly
reproducible numbers of mRNA molecules (53, 60, 61). Instead,
we should think of Bcd as a nearly deterministic response to
the embryo’s boundary conditions, which impact the gap genes
directly (SI Appendix, section F).

Scaling and Zero Modes

Scale invariance is a statement about the patterns of gene
expression in space. Nonetheless, our findings on gap gene scaling
have significant implications for network dynamics over time. To
derive these implications, it is useful to think in terms of a broad
class of models for the network dynamics.

There is a tension between building models that give a realistic
description of one particular network and models that have
some degree of generality. We will try for generality, including
essential ingredients: Proteins diffuse and are degraded, and their
synthesis is controlled—perhaps in complicated ways—by the
concentrations of other proteins. To simplify we ignore the
discreteness of the nuclei and describe the concentrations as
varying continuously in space, as in the analysis of data above.
To begin we also neglect noise, although we return to this below.
Then a general model is

�i
∂gi

∂t
= `2

i
∂2gi

∂x2 + Fi(g)− gi. [17]

Here gi is the concentration of the protein encoded by gene i,
and �i is that protein’s lifetime against degradation. The length
scale `i =

√
Di�i is determined by the diffusion constants Di

and lifetimes. All of the complexity of molecular interactions
is contained in the regulation functions Fi(g), which describe
how the rate of synthesis of the protein encoded by gene i
depends on all the concentrations g = {g1, g2, g3, g4}. We
emphasize that Fi(g) could encompass both activating and
repressive interactions, potentially combinatorially. This set of
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equations offers a very general description without microscopic
details and includes Turing’s original models (15) and their
intellectual descendants (16, 62) as special cases. Eq. 17 looks
like a model for an autonomous set of gap genes, but we will
see below how to include the maternal inputs. More details are
discussed in SI Appendix, section F.

It is important that the embryo length L does not appear
directly in Eq. 17 describing the dynamics of the genetic network.
The length appears instead only through boundary conditions.
In the absence of sources or sinks, the concentration profiles must
be such that there is no diffusive flux at either end of the embryo,
which means that

Di
∂gi(x)

∂x

∣∣∣∣
x=0

= Di
∂gi(x)

∂x

∣∣∣∣
x=L

= 0. [18]

Somehow these conditions at the ends of the embryo need
to propagate into the interior to make the solutions of these
equations scale-invariant.

Let us assume that the patterns we see are in steady state so that
gi(x, t) = gi(x), and scale invariance means that gi(x) = ĝi(x/L).
Thus if we change the length of the embryo by a small amount
�L, then the profiles of gene expression change

gi(x)→ gi(x)−
�L
L

[ x
L
ĝ ′i (x/L)

]
, [19]

where the prime denotes the derivative with respect to x/L. But
this is just one way in which the profiles could change, and it is
useful to think about some larger set of possibilities

gi(x)→ gi(x)−
∑
�

a��
�
i (x). [20]

The functions {��i (x)} are “modes” of variation in the expression
profiles, and the amplitudes {a�} provide a coordinate system in
this space of variations. Suppose we want to describe all the
possibilities. Then the number of modes must be the number of
genes times the number of independent points along the x axis,
e.g. the number of rows of cells; for the gap genes, the result is
that the space has a dimensionality d > 300.

One way of defining the modes {��i (x)} is to look at the
profiles across a very large set of embryos and perform a principal
components analysis (PCA). PCA chooses a set of modes such
that the smallest number of modes captures as much of the
total variance as possible, and the amplitudes of variation a� are
(linearly) independent of one another.

The dynamics of the network also define a privileged set of
modes. Since all the modes taken together describe all possible
variations, we can describe time-dependent profiles by letting the
amplitudes a� become time-dependent,

gi(x)→ gi(x)−
∑
�

a�(t)�
�
i (x). [21]

If all the amplitudes are small, so that the system is close to its
steady state, then the nonlinear Eq. 17 become linear in the a�(t).
Further, if we choose the modes correctly the equations for the
many amplitudes become independent of one another, and take
the simple form

da�(t)
dt

= −��a�(t). [22]

This means that as one gets close to the steady state the amplitude
of variation along each mode decays exponentially at a rate ��,

independent of all the other modes. This simplification works
only if we choose the modes to obey

∑
j

[(
`2

i
∂2

∂x2 − 1
)
�ij +

∂Fi

∂gj

∣∣∣∣
g=ĝ

]
��j (x) = −���

�
i (x).

[23]

Formally, the dynamical modes are eigenfunctions of some
linear operator. This is similar to the fact that principal compo-
nents are eigenvectors of the covariance matrix of fluctuations
around the mean. The condition in Eq. 23 is complicated; the
surprise is that there is a connection to scale invariance.

To have scale invariance, the spatial profiles of gene expression
still have to be steady-state solutions of the dynamical Eq. 17 for
the network even after the transformation in Eq. 19. For small
�L this condition becomes SI Appendix, Eq. S.52 in SI Appendix,
section F,

∑
j

[(
`2

i
∂2

∂x2 − 1
)
�ij +

∂Fi

∂gj

∣∣∣∣
g=ĝ

] [ x
L
ĝ ′j (x/L)

]
= 0. [24]

We see that the linear operator that appears here is the same as
the one that appears in Eq. 23. This leads to two conclusions.
First, how gene expression profiles transform as we change the
length of the embryo has to be one of the natural dynamical
modes of the network. Second, this mode has to be very special,
with �0 = 0; such modes are called “zero modes.”

In many physics problems, zero modes are guaranteed by
some underlying symmetry (63). Although the analogies are
imperfect, here the symmetry is scale invariance. The existence of
a zero mode is a statement about the linearized dynamics. If the
absence of a linear restoring force continues for finite deviations
from the steady state then there is a line of attracting spatial
patterns rather than a single stable pattern. Different points along
this line are the patterns appropriate to embryos of different
lengths, and boundary conditions select the final pattern. Line
attractors have long been discussed for neural networks (64).
It has been noted that models of the gap gene network might
support such line attractors (33), and there are also suggestions
that internal dynamics of the network can generate approximate
scaling (34).

The existence of a zero mode in the network dynamics has
several implications (see SI Appendix, section F for details):

• Most literally, one component in the spatial pattern of gene
expression will relax very slowly to its steady state. Formally the
relaxation will be as a power of time rather than exponential.

• The dynamics describe a “restoring force” that pulls gene
expression patterns toward their steady state; the eigenvalues
are the spring constants associated with these forces. There is
no (linear) restoring force along the zero mode, and in the
presence of noise, the fluctuations along this mode will be
very large compared with other modes. This one dominant
mode generates long-ranged spatial correlations among the
fluctuations in gene expression.

• Along directions with nonzero �� the fluctuations in g will be
approximately Gaussian so long as they remain small, as we see
for the gap genes. But along the zero mode, there should be
some deviation from Gaussian behavior.

There are hints of all these effects in previous work (31, 32).
Independent analyses indicate that the gap gene dynamics
are dominated by a small number of modes (65), and other
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arguments connect dynamics to scaling (66). More work is
needed to see whether all these results fit into a coherent picture.

Finally, the model we have considered describes an au-
tonomous network of gap genes. But maternal inputs such as
Bcd are thought to obey similar equations, describing diffusion
and degradation but no feedback regulating their synthesis, and
with different boundary conditions, e.g. a source of Bcd at the
anterior end of the embryo (37, 45, 67). Thus we can enlarge
the class of models to include maternal inputs (SI Appendix,
section F.E). In this larger system of equations, it remains true
that scale invariance requires the existence of a zero mode. Since
the zero mode emerges from interactions in a network, and Bcd
feeds into the gap genes without any feedback, it is natural that
maternal inputs do not scale. Related ideas appear in models
where the gap gene network forms stable patterns independent
of the maternal inputs, which then serve to anchor the pattern at
the poles (68).

Discussion

Scale invariance is an appealing concept. It quantifies the
intuition that organisms are built from parts in proportion to
one another, independent of an individual organism’s overall
size. Here we have explored scaling across many embryos from
a quasi-inbred laboratory stock of D. melanogaster, minimizing
genetic variation. Across this ensemble, fluctuations in embryo
length have a SD of 4%, with embryos in the tails of the
distribution deviating ±10% from the mean (SI Appendix,
Fig. S1). Following previous work, we measured the positions
of discrete markers—the CF position, the peaks of pair-
rule stripes, and the boundaries of gap gene domains—and
found scaling of the absolute positions with embryo length.
While consistent with previous results, we observe extreme
precision: Markers are at positions scaled in proportion to the
embryo length with an accuracy of ∼1% across the AP axis.
This precision excludes a broad class of models that combine
information from both ends of the embryo without explicit
scaling (44–47).

There is a conceptual difference between scaling in the
positioning of discrete markers and true, mathematical scale
invariance of the patterns in gene expression. We have introduced
an information-theoretic approach that analyzes the full, graded
spatial profiles of expression and measures similarity in the natural
units provided by the intrinsic noise levels of these profiles.
Concretely, we introduce a decomposition of the information
that morphogen concentrations provide about position into a
component about the scaled position and a deviation from
scaling. Applied to the gap genes in the early fly embryo, the
result is clear: The deviation from scaling is less than two percent
of the total positional information.

Our results build on a generation of work searching for scaling
in the fly embryo. This has involved measuring the patterns
of gene expression in D. melanogaster (22, 23, 25), comparing
related species (1, 59), and evolving new lines of flies artificially
selected for egg length (26, 69). By now the idea of scaling is
not surprising. What is surprising is the precision of our result.
In particular, all of the information gap gene expression levels
provide about position along the AP axis is information about
the scaled position, and “all” means more than 98%. Scaling
emerges not just as some approximate compensation for changes
in the length of the embryo, but rather as a precise mathematical
statement of invariance.

Mathematically, robustness is the ability of a system to
maintain certain behaviors despite variations in parameters
defining the dynamics. In this way, we can think of scaling as
a robustness of pattern formation to variations in egg length.
This should not be taken as evidence for a general notion of
robustness. As a counterexample, there is no need for robustness
against variations in the concentration of maternal inputs, since
these already are highly reproducible (60, 61).

The precise mathematical statement of scale invariance pre-
dicts that the dynamics of the underlying genetic network have
a zero mode. These dynamics then do not have a single attractor
but rather a line of attractors as in models for short-term memory
in neural networks (64), and the zero mode corresponds to
variations in the pattern of gene expression along this line in the
high dimensional space of possible patterns. In a single embryo,
position along the line of attractors is chosen by the boundary
conditions and hence the length of the embryo. A zero mode
connects otherwise disparate observations on gap gene expression
patterns (31, 32).

In contrast to the results for the gap and pair-rule genes, at least
one of the maternal determinants, Bcd, does not exhibit scaling.
We can see this “by eye,” simply plotting profiles vs. absolute or
scaled position, and these impressions are quantified by the same
information theoretic approaches used to demonstrate scaling in
the gap genes. Error bars again are in the range of∼0.01 bits, but
the deviation from scaling now is 10× as large. The conclusion
is that scale invariance is an emergent property of the gap gene
network, and it seems plausible that the pair-rule genes then
inherit this invariance. The argument that scaling results from
zero modes predicts that Bcd profiles cannot scale since there is
no feedback from other genes to Bcd (SI Appendix, section F).
This means that the scaling of gap genes is possible even in
the presence of nonscaling maternal morphogens. Our analysis
does not include any assumptions about the cross-regulatory
interactions among the gap genes. As such it does not provide a
“mechanism” for the scale invariance of the gap genes, but rather
provides general condition that such mechanisms, expressed as
dynamical models, must obey. Additional work is needed to pro-
vide concrete examples that instantiate these general theoretical
arguments.

Several results support the idea that scaling is an emergent
property of the gap gene network. Previous work on the evolution
of embryonic patterning across related Drosophila species has
shown that traits (gene expression pattern boundary positions)
can evolve without disrupting zygotic gene expression pattern
reproducibility in scaled coordinates (25, 70). Other signs of
emergent behavior appear in the gap gene network’s dynamic
response to varied Bcd concentrations (53) and in the rapid
evolution of compensatory responses to these variations (71).
However, the connection to scaling is not yet clear.

Scale invariance provides an anchor for thinking about
positional information and genetic network function, especially
in systems where not all the relevant components have been iden-
tified (72). Recent experiments on mammalian pseudoembryos
suggest that scale invariance may be a more universal feature of
genetic networks underlying developmental pattern formation
(73). In these self-organizing aggregates derived from stem cells,
scaling of gene expression patterns emerges spontaneously with-
out externally imposed input or even fixed boundary conditions.
The existence of such a different multicellular system that exhibits
precise scaling makes the zero-mode networks an even more
attractive scenario.
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40. M. D. Petkova, G. Tkačik, W. Bialek, E. F. Wieschaus, T. Gregor, Optimal decoding of cellular
identities in a genetic network. Cell 176, 844–855 (2019).

41. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
42. T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley and Sons, New York, 1991).
43. W. Bialek, Biophysics: Searching for Principles (Princeton University Press, 2012).
44. M. Howard, P. R. ten Wolde, Finding the center reliably: Robust patterns of developmental gene

expression. Phys. Rev. Lett. 95, 208103 (2005).
45. B. Houchmandzadeh, E. Wieschaus, S. Leibler, Precise domain specification in the developing

Drosophila embryo. Phys. Rev. E 72, 061920 (2005).
46. P. McHale, W. J. Rappel, H. Levine, Embryonic pattern scaling achieved by oppositely directed

morphogen gradients. Phys. Biol. 3, 107 (2006).
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