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1 Experimental methods

1.1 Generation of the distance series

The endogenous eve locus was tagged with MS2 stem-loops. First, an attP site was integrated at the
first intron of eve using CRISPR-mediated homology-directed repair [72]. The two Cas9 cutting sites are
marked in Fig. S1. Second, an attB-MS2 plasmid was used to deliver MS2 to the attP site. A genomic
source of phiC31 integrase (BDSC #34770) was used for the second injection. The synthetic eve-MS2
allele carries ∼10.6 kb between the two Cas9 cutting sites.

A series of attB landing site lines were established by mobilizing the P-element construct P-2xattB-mW
from a CyO balancer to the chromosome containing the eve-MS2 allele. A ∆2-3 P-transposes line (BDSC
#3629) was used for the transposition. Offspring displaying both Cy+ and w+ were subject to inverse
PCR to map the location of the attB insertions. attB insertions at -3321.9, -589.3, +47.5, +77.5, and +179.3
kb from the eve promoter in cis are used in this study. Furthermore, in order to avoid the insertion
biases of P-element, two MiMIC lines (MI02916 and MI00239, [73]) were recombined with the eve-MS2
chromosome to yield the -75.9 and -186.8 kb lines. The exact insertion points of these lines and their
conversion to distances between the blue- and green-labeled spots are listed in Table S1.

Finally, the PP7 reporter transgenes (parS-homie-evePr-PP7 or parS-lambda-evePr-PP7) were integrated
into the landing sites described above through recombination-mediated cassette exchange using BDSC
#34770 as the integrase source. Transgenic flies with insertion orientations shown in Fig. S1A were
obtained and used for the imaging experiments.

Fluorescent protein-tagged MCP, PCP, and ParB lines were made as previously described [8]. For ma-
ternal MCP::3xmTagBFP2 and PCP::3xmKate2, a genomic landing site at 38F1 was used. For maternal
ParB::eGFP, a landing site at 89B8 was used. All microinjections were performed as described previ-
ously [74].

Figure S1: Map of the genomic constructs. The transcription start site (TSS) of eve (2R:9979319), the center of the endogenous homie element
(2R:9988933) and the two Cas9 cutting sites (2R:9979605 and 2R:9980606, marked by stars) used for MS2 knock-in are labeled with dashed
arrows. Each evePr-PP7 reporter line is named after the distance between its insertion site and the eve TSS, with a sign indicating upstream (-)
or downstream (+) to the eve locus. Note that the new eve allele is larger than the endogenous one due to the presence of transgenic selection
markers (GFP and RFP). The MS2-parS distance can be calculated from the distance shown below the map. Genomic distances and sizes of
the sequence elements are drawn in scale.

1.2 Microscopy

Virgins carrying three fluorescent protein fusions (yw; MCP::3xmTagBFP2/PCP::3xmKate2; ParB::eGFP/+)
were crossed with males containing the eve-MS2 allele and the parS-evePr-PP7 reporter transgenes. Em-
bryos from the crosses above were dechorionated manually and mounted as described in [75].
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Name Breaking point on 2R Distance to eve TSS (bp) MS2-parS distance (kb)

-3322 6657453 -3321866 3327.7
-589 9389997 -589322 595.1
-142 9836454 -142865 148.7
-76 9903417 -75902 81.7
+47 10026855 47536 57.8
+77 10056812 77493 87.8
+179 10158620 179301 189.6

Table S1: Details of the distance series. All breaking point coordinates are from the Dm5 reference. Throughout the text, we cite the MS2-parS
distances and refer to their rounded values in legends for simplicity.

A Leica SP5 confocal microscope with an oil immersion 63x NA 1.44 objective was used in all imaging
experiments. Three laser lines at 405 nm, 488 nm, and 591 nm were used to excite mTagBFP2, eGFP,
and mKate2, respectively. For each z slice, the emission channels for 405 nm and 591 nm were acquired
simultaneously, followed by the 488 nm channel. Power measured at the objective for the 405 nm, 488
nm, and 591 nm lines was 0.4 µW, 1.1 µW, and 0.5 µW, respectively. Three HyD detectors in photon
counting mode were used to collect fluorescence emission spectra.

The voxel size for all images is 107x107x334 nm3 (x/y/z). The stack interval for all time-lapse videos
was 28 s, except for the ones shown in Fig. 3C, 4B, and 4D, where the stack interval is 5.4 s. For the
data with a 28 s frame rate, an 8 µm z-stack covering the whole nucleus along the apical-basal direction
is acquired during the 28 s time interval. Images were taken at 1,024 x 256 x 25 voxels and focused on
the posterior half of the embryo, encompassing eve stripes 3–7. Embryos were timed by their exit from
mitosis 13 [76]. All embryos were imaged from 20 ± 2 min to 55 ± 2 min in cell cycle 14. Based on a
localization control construct, the measurement errors in spot localization in this setup are 180 ± 6 nm
(mean ± s.e.m.) [8]).

1.3 Nucleus and DNA locus segmentation and tracking

Segmentation and tracking of cell nuclei and DNA loci were done as described before [8]. Briefly, we
computed the difference between the blue and red channels (since NLS::MCP::3x mTagBFP2 is enriched
in the nuclear compartment while ParB-eGFP is enriched in the cytoplasm) by subtracting the maximum
z-projection of the green channel from the blue channel, followed by Gaussian blurring (σ = 5) and
binarization (local Otsu’s threshold at 5 x 5 µm2 [77]). To account for the motion of the whole embryo
and the nuclei during imaging, we inferred the nuclear movement by minimizing the cross-correlation
between nuclear masks of two consecutive frames. All nuclear segmentation and tracking results were
scrutinized manually.

For DNA locus segmentation, we first identify candidate loci using sharpened raw image stacks from
each of the three channels using a 3D bandpass filter (size 11 x 11 x 7 pixels), derived by subtracting a
uniform filter from a Gaussian kernel (σ = (1, 1, 0.6) pixel). All local maxima of this filtered image are
considered candidate loci. At each local maximum, we constructed a cylinder mask with a diameter
of 13 pixels (1.4 µm) and a height of 7 pixels (2.3 µm). We then set an intensity threshold such that
the maximum number of candidate loci in the nucleus at each time point was less than 20, followed by

4



filtering the set of candidate loci using information on nuclear lineage, spot tracking, and the relative
location of spot pairs.

For DNA locus tracking, we calculated the sub-pixel centroid of each candidate locus, only consider-
ing candidate loci located in the corresponding nuclear region obtained from the nuclear segmentation
results. Spot tracking was then performed in three steps: a pre-tracking step, a gap-filling step, and a
Bayesian filtering step [8].

1.4 Chromatic aberration correction

Imaging the positions of the eve-locus and the ectopic reporter with different wavelengths introduce
chromatic aberrations, i.e. an instrumental error. This appears as a systematic error in our data (con-
stant position displacements), which can vary across the field of view. Since positions of imaged loci
are random, we assume that on average they have to be centered at zero, and any systematic errors are
caused by the chromatic aberrations between the two channels. We perform a correction of this sys-
tematic error using data-driven and internally controlled (i.e., for the entire data set on any given day
of data collection) calibration [8]. We consider the entire field of view and make a correction at each
position in the 3D field of view.

We assume that the mean of the blue-green vector along each dimension is zero. For example, the prob-
ability that a blue spot appears above the associated green spot should be the same as the probability
that it is below the associated spot. By applying linear regression to each dimension of displacements
(x, y, and z) and extracting a 3x3 matrix, effectively the slope of this bias across the field of view in
each dimension, the spot coordinates from a given color channel are scaled by the matrix to obtain the
correction vector. This correction vector is the difference in the scaling of two channels, using one as a
reference for the other to be matched to. Subtracting the correction vector from the original spot gives
the corrected spot centroid, which can then be used for displacement calculation. This procedure effec-
tively rescales the coordinates of all spots as to readjust the aberration slope across the fields of view to
zero.

The assumptions underlying this approach were tested explicitly using control experiments with co-
localized fluorescent proteins and three-color TetraSpec beads [8] (Fig. S2). This approach also allowed
estimation of the residual measurement error in spot localization as being 180 ± 6 nm, in line with the
errors inferred from our MSD analysis, see below (section 4.1).

Chromatic aberration correction was performed on a weekly basis, using all the embryos of the same
genotype imaged over the week. An example of the correction is given in Fig. S2. We used this data-
driven and internally controlled calibration scheme to estimate the blue–green distance for all genomic
constructs, which we report in the main text.
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Figure S2: Correcting chromatic aberrations. (A-C) Chromatic aberration distance bias before (a) and after (b) correction with comparison
(c) in the x-component of blue and green channels of calibration beads (Tetraspeck) for one image (n = 95). (D) A representative dataset
showing raw MS2-parS distance, i.e. the raw distance between a blue-green spot pair (E–P distance) as a function of the spot pair position
in the field of view (1 pixel = 107 nm). 24 homie-evePr-PP7 embryos imaged over a week are included (gray points). These embryos form
a chromatic aberration correction batch. Blue data points are from a single embryo. Dotted line shows the result of the linear fitting. The
slope (0.0186 ± 0.0045) is significantly different from zero (p = 3.96 × 10−5, two-tailed t-test), indicating chromatic aberrations due to the
optical setups. (E) E–P X distance after chromatic aberration correction described in Supplementary Methods. Both the slope and intercept
are zero for the fitted line after the correction. (F, G) Boxplots showing distributions of the raw (blue boxes) and corrected (red boxes) E–P X
(F) and Z (G) distance for each embryo in the correction batch. Medians are shown. Boxes represent the interquartile range, and the whiskers
extend to 2.5 times the interquartile range above or below the medians. (H, I) Estimating errors associated with the correction. The errors are
estimated by obtaining a correction matrix from every single embryo and applying it to all embryos in the same batch to get a distribution of
the corrected E–P distance. Means of E–P distances calculated from the correction matrix derived from different single embryos are plotted,
with bars showing 2.5–97.5 percentile range for dX (H) and dZ (I). The error (standard deviation) is 21 and 35 nm for dX and dZ, respectively.
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Figure S3: Tracking of cell nuclei. (A) Trajectories of nuclei (black), enhancer (blue), and promoter (green) within a single embryo (s = 149 kb)
in the lab frame of reference. (B) Motion corrected DNA locus trajectories. (C) Single-locus MSD M1(t) (Eq. (S25)) of the enhancer (blue),
promoter (green), their center of mass (r1(t) + r2(t))/2 (red), and the nucleus trajectories (black). Approximate scaling of the nucleus MSD
scaling is indicated. (D) Velocity cross-correlation of the motion-corrected locus trajectory and the nucleus trajectory, indicating no correlation
beyond the first time point t = ∆t, as expected for purely random measurement errors in the nucleus tracking (section 4.3).

1.5 Nucleus motion correction

Following tracking of the DNA loci, two further operations are performed: (i) we corrected for chro-
matic aberration to gain access to the dynamics of the 3D distance vector Rij; (ii) we performed motion
correction of the trajectories to obtain the absolute motion of DNA loci within the nucleus frame of
reference.

To correct chromatic aberration, we perform a data-driven, internally controlled calibration; and ap-
proach that was tested extensively in previous work [8]. Briefly, we pooled raw instantaneous locus-
pair distances across time, nuclei, and embryos, and analyzed the raw distances as a function of the
locus-pair positions in the image field of view. To correct aberration, we applied a multivariate normal
regression model to infer the correction matrix that allows the calculation of calibrated distances (see
section above), which were used throughout the subsequent analysis.

To perform motion correction, we subtract the nucleus trajectories from the DNA locus trajectories
(Fig. S3A,B). In many experimental systems, this is challenging as nuclei often undergo complex combi-
nations of rotation, shape changes, and translation. During the final phase of the syncytial blastoderm
stage of the developing Drosophila embryo, nuclei undergo very little relative motion, do not rotate,
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and simply show affine global translation, which we can track as described above. As the same nu-
cleus trajectory is subtracted from both DNA loci, measurement errors in the nucleus tracking could
introduce spurious correlations in the observed relative motion of the two DNA loci. To exclude sys-
tematic measurement errors in the nucleus tracking, we calculate the velocity cross-correlation of the
motion-corrected locus trajectory and the nucleus trajectory (Fig. S3D), which is consistent with the ex-
pectation for time-uncorrelated measurement errors in nucleus tracking (section 4.3). Furthermore, we
find no traces of spurious motion in the trajectories of the DNA locus center of mass, as its MSD fol-
lows the same subdiffusive exponent as that of individual loci, which should be contrasted with the
superdiffusive exponent of the nucleus movement (Fig. S3C). Together, these tests demonstrate that nu-
cleus tracking and motion correction only introduces random time-uncorrelated measurement errors
in the locus trajectories, which we account for using error correction in the velocity cross-correlations
(section 4.3).

2 Topological and transcriptional state analysis

2.1 Hidden Markov Model inference

Based on the architecture of our genetic system comprising the enhancer and promoter, which are each
flanked by a homie insulator element, the system can be in one of three states: (i) A state where the
two homie elements are unbound, termed Ooff. In this state, we expect large inter-locus distances. (ii) A
topologically distinct state where the two homie elements are bound, but where transcription is inactive,
termed Poff. In this state, we expect small inter-locus distances, and no signal in the red channel. (iii)
A state where the two homie elements are bound and transcription is active, termed Pon. In this state,
we expect small inter-locus distances, and the red channel to be on. The existence of these three states
was demonstrated previously using various control experiments with individual elements of the genetic
cassette missing [8]. To verify the assumption that active transcription corresponds to smaller physical
distances in all sampled genomic separations, we plot interlocus distances depending on the intensity
of the red channel (Fig. S4). This confirms that transcriptionally active states are associated with smaller
physical distances, consistent with previous observations [8].

B

full data set 
data with red < 0.25 
data with red > 0.25

A

Figure S4: Interlocus distances as a function of the transcriptional state. (A) Scatter plots of the entire data set for each genomic separations,
with points colored by whether the red signal is on (red intensity > 0.25; red), or off (red intensity < 0.25; blue). (B) Histograms of the
interlocus distances for the entire data set (grey), points where the red signal is on (red intensity > 0.25; red), or off (red intensity < 0.25; blue).

Together, these arguments suggest an underlying structure of state transitions as shown in Fig. S5A.
Transitions between O and P toggle between two distinct topological states; transitions between OFF
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and ON toggle between two transcriptionally distinct states. Importantly, the details of the state infer-
ence performed here do not influence our later analyses on the polymer configurations or dynamics,
which are based directly on the observed distance trajectories, which do not sensitively depend on the
inferred underlying states (see Supplementary Section 2.6).

To infer the particular state of the system at each moment in time, we modeled the data (inter-locus
distance and intensity time-series) as a Hidden Markov Model (HMM) [78] calibrated using a Markov
Chain Monte Carlo (MCMC) sampler [79]. The general idea underlying ‘classical’ inference is to maxi-
mize the probability of the data under some model, namely to find the parameters Θ that maximize the
likelihood of the data D. In this manuscript we adopted a Bayesian approach, simultaneously estimat-
ing the state identity and the probability of the state transition rates given the observed data, i.e., the
joint posterior distribution P(Θ|D), using Bayes’ rule:

P(Θ|D) =
P(D|Θ)P(Θ)

P(D) ≡
∫

P(D|Θ)P(Θ)dΘ
, (S1)

where P(Θ) is the prior that encodes for prior knowledge about the parameter values, which we take to
be log-uniform here since these are real, positive, and have some unknown scale [50].

The likelihood of the data P(D|Θ) is expressed in terms of the likelihood of the individual nuclei time-
series, which are independent:

P(D|Θ) =
ND

∏
i=1

P(Di|Θ), (S2)

where Di = {(R0, R1, ...), (I0, I1, ...)} corresponds to the time series of the inter-locus distance R and the
transcriptional fluorescence intensity I for a single nucleus. Assuming an HMM, the likelihood of a
single nucleus takes the following form:

P(Di|Θ) = ∑
{Λ}

[
Nt

∏
t=1

P(Rt, It|λt)P(λt|λt−1)P(R0, I0|λ0)P(λ0)

]
, (S3)

where λt is the hidden state of the system at time t (either Ooff, Poff, or Pon, Fig. S5A), P(Rt, It|λt) the
“emission” probability, P(λt|λt−1) the transition probability, P(λ0) the initial state probability, and the
sum is performed over all possible state configurations Λ ≡ (λ0, λ1, ...). The likelihood above is com-
puted efficiently using the forward algorithm [78].

For our specific case, we modeled the emission probability that relates the data to the hidden states,
as two independent probability distributions, i.e. P(R, I|λ) = P(R|λ)P(I|λ). The first is the probabil-
ity distribution P(R|λ) for the inter-locus distance Rij given each state λ. We find that the Maxwell-
Boltzmann distribution provides a good fit to the experimental distributions of inter-locus distances
(Fig. S5E). Therefore, we assume this general functional form for the distance distributions:

P(Rij|σR) = 4πR2
ij

(
3

2πσ2
R

)3/2

exp

(
−3R2

ij

2σ2
R

)
. (S4)

This distribution is quantified by a single parameter σR, which is the average distance, i.e. ⟨Rij⟩ =
σR. This is the probability distribution of end-to-end distances of an ideal chain polymer, with σ2

R =
Na2, where N is the number of monomers and a is the monomer length [54]. We choose this general
functional form here as it simplifies the inference (single parameter) and also provides a good fit for our
empirical observations.

9



The second distribution P(I|λ) models the fluorescence I of the red channel (as a measure of transcrip-
tional activity) conditioned on whether the state λ is transcriptionally active (Pon) or inactive (Ooff or
Poff). To capture the broad distribution of fluorescence intensities in the transcriptionally active state
(Pon), we employ a Rayleigh distribution as an effective model to approximate the expected overdis-
persed Poisson noise due to transcriptional bursts and the additive Gaussian measurement noise :

P(I|σI) =
I

σ2
I

exp
(

−I2

2πσ2
I

)
. (S5)

Importantly, this distribution remains simple as it is quantified by a single parameter σI , and turns
out to be flexible enough to also account for the distribution of background fluorescence intensities in
the transcriptionally inactive states (Ooff or Poff). Indeed, the above distribution captures the empirical
distribution of intensities decently well (Fig. S5F), and the specific choice we made here did not impact
significantly our state calling.

Next, the transition between the three states (Ooff, Poff, and Pon) is defined by the generator or Laplacian
matrix of the system according to the network in Fig. S5A:

G =

− f1 b1 b3
f1 −b1 − f2 b2
0 f2 −b2 − b3

 . (S6)

The resulting transition probabilities P(λt|λt−1) in Eq. S3 are then computed as the matrix exponential
of G, i.e. P(λt|λt−1) ≡ exp[G∆t], where ∆t is the sampling time interval. The initial state distribution
P(λ0) is chosen as the steady state distribution of the system, which is obtained by solving the linear
system GP = 0.

Lastly, Θ represents the entire set of parameters governing the observed distances, the observed intensi-
ties, and the state transition rates with a total of six physical scales and five kinetic parameters that need
to be inferred:

Θ = {σR(Ooff), σR(Poff), σR(Pon), σI(Ooff), σI(Poff), σI(Pon) f1, f2, b1, b2, b3}. (S7)

Due to the underlying symmetries of our model, the eleven parameters above are not fully identifiable
(structural identifiability). Indeed, in the absence of structure imposed on the σR and σI , the states Ooff,
Poff and Pon could be permuted and the inference would be degenerate. However, as we mentioned
in the beginning of this section (see Fig. S4), we have some prior knowledge about the structure of the
system. From the data, it is clear that σR(Ooff) ≥ σR(Poff) ≃ σR(Pon) and σI(Ooff) ≃ σI(Poff) ≤ σI(Pon)
should be satisfied. Thus, to break the symmetries, we decided to enforce σR(Poff) = σR(Pon) ≡ σR(P),
effectively reducing the number of parameters by one. The same treatment could be performed on the
σI ’s (i.e., enforcing σI(Ooff) = σI(Poff)), further reducing the number of parameters. Instead, we decided
to keep these three parameters free as a control and monitor the relative scale of the σI ’s.

Inferring Θ for each clone individually (i.e., for different genomic separation s) is a challenging task,
given a large number of parameters (i.e., ten) and the risk of overfitting. This is especially true for the
clones for which we have limited data (n ∼ 50 traces for s = 57, 82, and 88 kb, see Table S6). However,
given our system, most of the parameters could be shared among the clones since genomic separation is
unlikely to affect all the σI ’s, σR(P), and the rates { f2, b1, b2, b3} related to the Poff ↔ Pon transitions and
the homie-homie unbinding transition Poff → Ooff. To drastically simplify our inference problem, we thus
initially made the assumption that only f1 and σR(Ooff) are clone-specific (and thus depend on genomic
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Figure S5: Calibration of a hierarchical HMM model to infer topological and transcriptional states. (A) Schematic of the latent state transi-
tions learned. (B) Posterior distributions P(Θ|D) of the global parameters Θ = {σR(P), σI(Ooff), σI(Poff), σI(Pon)} related to the observation
distributions. (C) Posterior distributions P(Θ|D) of the transition rates that are shared among the different clones, i.e., parameters that are
assumed independent of genomic separation. (D) Posterior distributions P(Θ|D) of the parameters that are specific to each clone, i.e., the
distance σR(Ooff) and the rate f1. (E) Comparison between the calibrated observation distributions (dotted lines, Eq. (S4) using the inferred
σR(Ooff) and σR(P)) and the underlying state based empirical distributions for distances. (F) Comparison between the calibrated observation
distributions (dotted lines, Eq. (S5) using the inferred σI(Ooff), σI(Poff) and σI(Pon)) and the underlying state based empirical distributions for
intensities.
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Figure S6: Example trajectories for various genomic separations. For each genomic separation s, one input pair of blue-green distance R and
red transcriptional fluorescence intensity I are shown on top of the inferred state. The inferred state is obtained as the argmax of the posterior
decoding P(λt|D) computed using the calibrated hierarchical HMM (see Fig. S5).

separation s), whereas all the other parameters are shared among the clones. Such a structure defines a
hierarchical model characterized by the following likelihood function:

P(D|ΘH) =
Ns

∏
j=1

P(D(sj)|Θ = {ΘG, Θj}), (S8)

where D = {D(s1), ...,D(sNs)} is the full data set made of all the genomic separation sj, P(D(sj)|Θ) is the
likelihood of the data for a specific sj (see Eq. S2), ΘH = {ΘG, Θ1, ..., ΘNs} is the ensemble of parameters,
among which ΘG = {σR(P), σI(Ooff), σI(Poff), σI(Pon), f2, b1, b2, b3} are the global parameters that are
shared for all sj, and Θj = {σR(Ooff), f1} are the local parameters specific to each sj. Notably, this
assumed hierarchical structure leads to a massive reduction in the number of parameters, namely #Θ =
8 + 2 · Ns instead of #Θ = 10 · Ns (with Ns = 6, #Θ = 20 versus #Θ = 60 respectively).

We first estimated the joint posterior distribution P(ΘH |D) of our hierarchical model (S8). The posterior
P(ΘH |D) was sampled using an MCMC sampler [79], which enables estimation of the marginal poste-
rior distribution for each parameter. All the marginal posterior distributions are shown in Fig. S5B-D,
and the resulting parameter estimates (mean and standard deviation) can be found in Table S2 and S3.
Interestingly, the posterior of the rate b3 looks like the prior (log-unfiorm), and the mean rate b3 is much
smaller than b2. This clearly indicates that the contribution of b3 to the model dynamics is negligible and
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σR(P) (nm) σI(Ooff) (a.u.) σI(Poff) (a.u.) σI(Pon) (a.u.)
444 ± 2 0.115 ± 0.000 0.160 ± 0.001 0.952 ± 0.007

b1 (1/min) f2 (1/min) b2 (1/min) b3 (1/min)
0.094 ± 0.006 0.034 ± 0.003 0.063 ± 0.005 0.002 ± 0.002

Table S2: Global parameters ΘG of the hierarchical HMM model estimated using MCMC.

s (kb) σR(Ooff) (nm) f1 (1/min)
58 559 ± 8 0.037 ± 0.007
82 724 ± 11 0.101 ± 0.017
88 764 ± 8 0.039 ± 0.007
149 792 ± 2 0.013 ± 0.001
190 882 ± 5 0.019 ± 0.003
595 1074 ± 6 0.005 ± 0.001

Table S3: Local parameters Θj of the hierarchical HMM model estimated using MCMC.

b3 can safely considered to be zero. Moreover, we found that σI(Ooff) ≃ σI(Poff) < σI(Pon) as expected.

Leveraging the inferred parameters of the hierarchical model, we then reconstructed the states un-
derlying the inter-locus distance and transcriptional activity of individual nuclei using a Viterbi al-
gorithm and posterior decoding [78]. These algorithms take as input the time series of the distances
R and red fluorescence values I of a single nucleus. The Viterbi algorithm finds a single state trajec-
tory Λ = (λ0, λ1, ...) that maximizes P(Λ|Di, Θ), namely the most likely trajectory given the data and
the inferred parameters. Alternatively, we also used posterior decoding that enables computation of
the state marginal distribution P(λt|Di, Θ) at time t given the data and the inferred parameters. A
single state trajectory Λ = (λ0, λ1, ...) can then be computed from the state marginal distribution as
λt = argmax P(λt|Di, Θ). It turns out that for our system, both approaches, either the Viterbi or Poste-
rior decoding, predict essentially the same underlying latent state trajectories (see example in Fig. 2C,D
and Fig. S6). The overall state reconstruction statistics using the hierarchical model are given in Table
S4.

Using the state inference, we then checked whether the emission probabilities P(R|λ) and P(I|λ) (Eq.
S4 and S5) calibrated with the inferred parameters {σR(Ooff), σR(P)} and {σI(Ooff), σI(Poff), σI(Pon)}

s (kb) Nnuclei N(Ooff) N(Poff) N(Pon)

58 55 36 24 28
82 59 43 56 23
88 58 47 35 15
149 579 555 203 73
190 166 144 65 26
595 164 161 21 4

Table S4: State statistics based on the hierarchical HMM. Total number of measured nuclei (Nnuclei) and number of nuclei for which at least
one given state (N(Ooff), N(Poff) and N(Pon)) is observed as a function of the genomic distance s.
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s (kb) σR(Ooff) (nm) σR(P) (nm) f1 (1/min) b1 (1/min) f2 (1/min) b2 (1/min)
58 560 ± 7 404 ± 6 0.023 ± 0.007 0.079 ± 0.023 0.110 ± 0.026 0.063 ± 0.014
82 738 ± 13 464 ± 5 0.089 ± 0.019 0.058 ± 0.011 0.032 ± 0.006 0.098 ± 0.019
88 770 ± 8 476 ± 7 0.044 ± 0.009 0.099 ± 0.020 0.035 ± 0.009 0.075 ± 0.021
149 793 ± 2 440 ± 3 0.014 ± 0.001 0.098 ± 0.008 0.029 ± 0.003 0.066 ± 0.007
190 876 ± 5 420 ± 6 0.014 ± 0.003 0.089 ± 0.016 0.036 ± 0.008 0.046 ± 0.009
595 1071 ± 6 378 ± 10 0.005 ± 0.001 0.124 ± 0.032 0.020 ± 0.011 0.050 ± 0.025

Table S5: HMM parameters Θ estimated separately for each genomic separation s using MCMC.

match the empirical distribution (Fig. S5E,F). Overall, the agreement is excellent supporting the validity
of our inference. Lastly, to test our assumption behind our hierarchical model, that most parameters
are shared, we perform inference for each genomic separation separately. To do so, we fixed σI(Ooff),
σI(Poff) and σI(Pon) to the values of the calibrated hierarchical model (Table S2) and we set b3 = 0 as this
parameter appeared unnecessary (see paragraph above). We then re-estimated f1, f2, b1, b2, σR(Ooff) and
σR(OP) for each clone individually and these can be found in Table S5. Overall, the resulting parameter
values are very close to the estimates of the hierarchical model (see also section 2.5, and Fig. S10), thus
supporting our key assumption.

2.2 Validating the HMM using simulated data

To validate our reconstruction of the states and the inference of the underlying transition rates, we tested
our HMM approach on simulated data. We aimed to generate synthetic data sets that mimic real data,
namely simulated data that satisfy the same latent state transition with realistic rates { f1, b1, f2, b2, b3}
and observation parameters {σR(Ooff), σR(P), σI(Ooff), σI(Poff), σI(Pon)} (Fig. S5).

We chose to test our approach on three different genomic separations; short (s = 58 kb), medium
(s = 149 kb), and long (s = 595 kb). For each s, we generated 300 time-series of blue-green distance
R and transcriptional intensity I, whose duration equaled 40 min and sampling time ∆t ≃ 30 s as in
real data. Time series for the blue-green distance were generated using simulations of a Rouse poly-
mer model with 1000 beads. We tracked the position of two beads equidistant from the central bead
of the polymer, with a separation s/2 from the center such that the ”genomic distance” was given by
s = 58, 149, 595 beads. We then rescaled time and length scales such that the relaxation time of the
polymer τ = s2 and the average inter-locus distance matched the experimental values for each value
of s. To capture the dependence of the transition from the Ooff to the Poff state on the dynamics of the
3D distance, we defined a simple implementation of distance-dependent homie-homie binding. Specif-
ically, we defined a success rate of homie-homie binding r, such that the two ends of the polymer bind
with probability r when in close proximity (defined by a threshold on the 3D distance of 400 nm). The
parameter r was assumed constant for all simulations and set to 0.1% to approximately reproduce the f1
rate estimated from real data. Note that this parameter r cannot be compared to the biological success
rate of real homie binding, as it depends on the time scale at which the system is sampled. Once the
two homie elements are bound, we include an additional linear spring linking the two loci, with spring
constant klink = 0.02k, where k = 1 is the spring constant of the backbone of the polymer. The parameter
klink was chosen to generate distances R whose mean ⟨R⟩ ≃ 400 nm in the Poff and Pon state. In addition,
once the Poff state is reached, we ran a Gillespie algorithm to simulate the transition from the Poff to Pon
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state and from the Poff back to the Ooff state [80]. The Gillespie simulation was performed according to
the state transition in Fig. S5A, with rates set by the global parameters determined from real data (Table
S2 and b3 = 0).

Next, to simulate the intensities I in the Ooff and Poff state (i.e., the background), we generate uncor-
related samples from a Rayleigh distribution with parameter σI(Ooff) and σI(Poff) set from Table S2,
respectively. Lastly, to simulate the transcriptional intensities in the Pon state, we sampled in log space
from a Gaussian process Ĩ(t) with mean µ̃, variance σ̃2 and covariance function K(t, t′). We chose
K(t, t′) = exp (−|t − t′|/τe) (Ornstein–Uhlenbeck) and we set the correlation time to τe = 2 min, which
approximates the temporal correlation in the transcriptional signal. The mean µ̃ and the variance σ̃2

were defined such that the intensity time-series in real-space I(t) = exp( Ĩ(t)) is log-normal distributed
with mean and variance equal to a Rayleigh distribution of parameter σI(Pon) determined from Table
S2. Namely, µ̃ and σ̃2 are given by:

µ̃ = log
(

πσI(Pon)

2
√

2

)
and σ̃2 = log

(
1 +

4 − π

π

)
(S9)

All the simulated time series were assumed to start in the Ooff state. As an example, a pair of simulated
distance R and intensity I time series is shown in Fig. S7C.

With these three simulated data sets in hand (i.e., with s = 58, 149, and 595 kb), we can compare the
inferred to the input parameters that were used to generate the simulated data. We performed the
HMM inference for each data set separately, by sampling the joint posterior distribution P(Θ|D) with
MCMC as described in section 2.1. Thus, for each data set, we estimated the ten free parameters all
at once, namely Θ = {σR(Ooff), σR(P), σI(Ooff), σI(Poff), σI(Pon) f1, f2, b1, b2, b3}. The resulting marginal
posterior distributions for s = 149 kb are displayed in Fig. S7A with the input (true) parameters high-
lighted by a vertical dashed line. For each simulated data set, we estimated the relative error on all
parameters. Overall, the absolute relative error for the rates is 30% on average (Fig. S7B top), while for
the observation parameters, these are 7% on average (Fig. S7B bottom). Thus, even when estimating all
the parameters at once (hardest case), the errors remain reasonable and clearly allow us to distinguish
different scales among the parameters.

Having checked our ability to infer parameters correctly, we next tested whether our state inference is
accurate. We thus performed posterior decoding using our trained HMM on the three simulated data
sets, as described in section 2.1. The whole state reconstruction for s = 149 kb is shown in Fig. S7D,E;
the inferred state trajectories are visually hardly distinguishable from the ground truth. Assessing our
reconstruction error on all simulated data sets, we recovered the correct state for more than 95% of
the time points (Fig. S7F). Overall, the state inference is excellent and does not strongly depend on the
underlying error on the rate parameters, since the signatures of the different states in the data are rather
strong (especially for Ooff and Pon).

2.3 Single trajectory state analysis

Here, we demonstrate that the majority of single-cell trajectories explore the full range of interlocus
distances that are sampled by the whole ensemble of trajectories in all three inferred states. From the
ensemble of state trajectories (Fig. S8A), we plot the distance distributions for every single trajectory as
a function of its inferred transcriptional and topological state (Fig. S8B-C). We find that in the majority
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Figure S7: Validating the HMM inference on simulated data. (A) Posterior distributions P(Θ|D) estimated using simulated data with
genomic separation s = 149kb. Vertical dashed lines indicate the input parameters used for generating the data. (B) Relative error (in %) with
respect to input values on the inferred rates (top) and distances (bottom) for three simulated data sets with different genomic separation (color
code; s = 58, 149 and 595kb). (C) State inference on simulated data. (D) True states for the entire simulated data set s = 149kb. (E) Inferred
states for the entire simulated data set s = 149kb. (F) Fraction of inferred states as a function of true input (in %) for all simulated data sets.

of cases, the single trajectory distributions approximately match the population-averaged distribution,
suggesting that the single-cell trajectories explore the full range of distances of each state.

As a more stringent criterion, we perform a hypothesis test of the null hypothesis that the single-cell
distribution is indistinguishable from the ensemble-averaged distribution. Specifically, we use the two-
sided Kolmogorov-Smirnov test comparing for each trajectory the single-trajectory distribution to the
population distribution. The null hypothesis that the distributions are the same is rejected if p < 0.05.
We find that for most data sets, for the majority of trajectories in all states for all genomic separations,
the null hypothesis is not rejected (Fig. S8E).

2.4 Estimation of transcriptional lifetime

To estimate the lifetime of transcriptional activity, we use the inferred state trajectories (section 2.1) to
calculate the typical time the system remains in the Pon state. Lifetime estimation is challenging due to
the problem of censoring, referring to the fact that trajectories may start or end in the Pon state, which
gives only partial access to the lifetime in such a trajectory. To deal with this problem, we use the Kaplan-
Meier estimator for the survival function of the transcription lifetimes [81]. The survival function S(t)
gives the probability that the transcriptionally active state has not transitioned to a transcriptionally
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Figure S8: Single-trajectory interlocus distance distributions. (A) All state trajectories for genomic separation s = 149 kb. (B-D) Single
trajectory interlocus distance distributions for the three states (s = 149 kb). Each panel shows the distance distribution of a single trajectory
as a bar histogram and the population-averaged distribution as a solid line. Only trajectories with at least ten time points are included to
ensure sufficient statistics for comparison. (E) Percentage of trajectories for which the null hypothesis that the single-cell and the population
distribution are the same is not rejected, for each state and genomic separation.

inactive state, and is defined as

S(t) = 1 −
∫ t

0
p(t′)dt′ (S10)

where p(t) is the probability distribution of transcriptional lifetimes. We use the Kaplan-Meier estima-
tor [26, 81]

Ŝ(t) = ∏
ti<t

(
1 −

N(i)
uncensored

N(i)

)
(S11)

where N(i)
uncensored is the number of uncensored events of length ti and N(i) is the number of events with

length larger than ti. From this estimator, we obtain the survival curves shown in the main text Fig. 2C
and Fig. S9A. From these curves, the estimate of the median lifetime can be determined by finding the
intercept where Ŝ(median[τtrans]) = 0.5.

A second method to estimate the median lifetime is a maximum likelihood estimate under the assump-
tion that the lifetime distribution is exponential, i.e.

p(t) =
1

⟨τtrans⟩
e−t/⟨τtrans⟩ (S12)
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where ⟨τtrans⟩ is the mean transcriptional lifetime. Then, the maximum likelihood estimate of ⟨τtrans⟩ is
given by [26]

⟨̂τtrans⟩ =
1

Nuncensored
∑

i
ti (S13)

and the median lifetime is given by ln(2)⟨̂τtrans⟩.

The median lifetime estimates from both methods are given in main text Fig. 2D. For the genomic
separation of 595 kb, there are only 5 observed Pon states out of a total of 164 trajectories, meaning that
the lifetime is hard to estimate for this sample (see last panel of Fig. S9A). For 3.3 Mb, there are no
observed Pon states.

Furthermore, we compare these estimates to simply taking the mean of all observed lifetimes (Fig. S9B),
showing that also in this case, there is no variation with genomic separation, and the typical lifetime is
≈ 10 min.
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on means represent bootstrap error bars. Panels A-C are for the Pon state (red), while panels D-F show the same plots for the Poff state (cyan),
and panels G-I for the joined paired state when the system is either in Pon or Poff (magenta).

2.5 HMM parameter scaling analysis

To assess which parameters of our HMM model scale with genomic separation s, we systematically
compare the parameters of our global inference using the hierarchical model to the parameters obtained
by doing inference on each s separately (see also section 2.1). The hierarchical model was built on the
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Figure S10: Scaling of the HMM parameters, the predicted state-occupancy and state-lifetime. A,B, Inferred parameters as a function of
genomic separation s. (A) These parameters were assumed shared among the clones in the hierarchical model. Performing the inference
separately for each individual clone leads to the parameter values that remain close to the ones obtained using the hierarchical model (black
solid and dashed line, mean and standard deviation respectively). (B) These parameters were assumed to scale with genomic separation s.
Performing the inference separately for each individual clone preserves the scaling observe with the hierarchical model (gray line, power-law
fit). (C) HMM-predicted conditional occupancy of Poff and Pon states as a function of genomic separation s. (D) HMM-predicted occupancy
of the different states as a function of genomic separation s. (E) HMM-predicted residence time within the different states as a function of
genomic separation s. (F) Comparison between HMM-predicted and measured occupancies. (G) Comparison between HMM-predicted and
measured lifetimes.

assumption that most parameters are independent of s, and thus can be shared across clones (Eq. S8).

We first analyzed the parameters that were assumed to not scale with s (Fig. S10A), namely the distance
σR(P) and the rates { f2, b1, b2} related to the Poff ↔ Pon transitions and the homie-homie unbinding tran-
sition Poff → Ooff. Overall, these parameters, when inferred separately for each s, remain numerically
very close to the global estimate (black line) made with the hierarchical model. In addition, the power-
law exponents characterizing the scaling of these parameters as a function of s are close to zero (within
error bars), validating our assumption that these are mostly independent of s. Next, we investigated
the parameters that were assumed to scale with s (Fig. S10B), namely the open distance σR(Ooff) and
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the rate f1. When these parameters are inferred separately for each s, we again recover values that are
numerically very close to the global estimate (black dots). The observed scaling of the parameters with s
is very similar between the two inference approaches (hierarchical vs individual model, black and gray
lines respectively). Moreover, the estimated scaling exponents are significantly different from zero and
match the estimation based on data (Fig. 2).

Next, we investigated the impact of the parameter scaling on the steady-state occupancy (i.e., the prob-
ability) of the three states. To calculate the occupancy, we solved analytically the steady state equation
GP = 0, where G is the Laplacian matrix of the system (Eq. S6). We obtained the following expression
for the probabilities as a function of the rates:

P(Ooff) =
b1b3 + b1b2 + f2b3

Z
(S14)

P(Poff) =
(b3 + b2) f1

Z
(S15)

P(Pon) =
f2 f1

Z
(S16)

Z = b1b3 + b1b2 + f2b3 + (b3 + b2 + f2) f1. (S17)

Using the equations above, the conditional probabilities P(Poff|P) and P(Pon|P) are easily calculated:

P(Poff|P) =
b3 + b2

f2 + b3 + b2
(S18)

P(Pon|P) =
f2

f2 + b3 + b2
(S19)

(S20)

Interestingly, both P(Poff|P) and P(Pon|P) do not depend on f1, and thus are not expected to vary with
genomic separation s. Indeed, when computing these conditional probabilities using the parameters of
the hierarchical model (Fig. S10C, black line), we found P(Poff|P) = 0.65 and P(Pon|P) = 0.35, which
are independent on s and match the values estimated from data Fig. 2E. Similarly, when computing
these probabilities using the parameters from the individual fits (Fig. S10C, color dots), the probabilities
cluster around the global estimate (albeit s = 58 kb appears to be an outlier).

We then investigated the scaling of the occupancies themselves (Eq. S14). Given our parameter regime,
we expect the following scaling for the probabilities: P(Ooff) ∼ 1/(c + f1) and P(P) ∼ P(Poff) ∼
P(pon) ∼ f1, where f1 ∼ s−1.17±0.51 (see Fig. S10B). We computed these probabilities using both the
hierarchical and individual fit parameters and found scaling relationships that are very consistent with
our expectation (Fig. S10D).

Next, we investigated the scaling of the lifetime (mean residence time) of the different states. In our
HMM framework, the lifetimes are phase-type distributed and are easily computed from the state tran-
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sition matrix (Eq. S6). We found:

T(Ooff) =
1
f1

(S21)

T(Poff) =
1

b1 + f2
(S22)

T(Pon) =
1

b2 + b3
(S23)

T(P) =
f2 + b2 + b3

b1b2 + b1b3 + f2b3
(S24)

Only T(Ooff) depends on f1, and thus varies with s, whereas T(Poff), T(Pon) and T(P) are supposed
to be mostly independent on s. We computed these lifetimes using both the hierarchical and individ-
ual fit parameters and found scaling relationships that are again very consistent with our expectation
(Fig. S10E). Indeed, T(Poff), T(Pon) and T(P) are essentially constant, while T(Ooff) varies as the inverse
of f1.

Lastly, we compared the occupancies and lifetimes predicted by the HMM parameters to the occupan-
cies and lifetimes estimated from data based on state splitting (Fig. S10F,G). Overall, the excellent agree-
ment between the different quantities predicted by the HMM parameters and the ones estimated from
data (using state splitting) supports the validity of our inference and is indicative of the mathematical
consistency of our approach. Importantly, it should be noted that such an agreement is not necessarily
trivial. Indeed, the HMM model mainly acts as a prior for the state inference, thus if the data possessed
features that could not be accounted for by the model, discrepancies would have arisen.

2.6 Results without state splitting

The analysis of the two-locus dynamics shown in the main text is done for the Ooff only. To demonstrate
that our results on the two-locus dynamics do not sensitively depend on the details of the state inference,
we compare the statistics of the Ooff state to those obtained from the entire data set comprising all three
states. Since the data are dominated by the Ooff state, the state splitting does not have a strong impact on
most statistics, especially for large genomic separations. As expected, the average distances of the full
data are lower than those of the Ooff state only, and the inferred two-locus diffusion coefficients Γ2 are
lower. However, key scaling exponents are not strongly affected, including the scaling of the inferred
relaxation times τ (Fig. S11).
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Figure S11: Two-locus analysis is independent of state inference. (A) Probability distributions of the inter-locus distances Rij (s = 149 kb).
Blue: distribution for the Ooff state only, as shown in main text Fig. 2A. Grey: distribution for all states. (B,C) Probability distributions of the
inter-locus distances Rij for all separations, with (B) and without state splitting (C). (D) Scaling of mean interlocus distance with (blue) and
without state splitting (grey). (E,F,G) Two-locus MSD M2(t), with inferred values of the relaxation time τ (dashed lines) and the asymptote
2⟨R2⟩. (H) Scaling of the two-locus diffusion coefficient with genomic separation with (blue) and without state splitting (grey). (I,J,K) Two-
locus ACF C2(t), with inferred values of the relaxation time τ (dashed lines) and the asymptote 2⟨R2⟩. (L) Scaling of the inferred relaxation
time with genomic separation with (blue) and without state splitting (grey).

2.7 Analysis of no-homie data

To test the role of the homie insulator-mediated focal contacts for the transcriptional dynamics in our
system, we employ a reporter construct in which the homie sequence is replaced by a λ DNA sequence
of the same length. In this system, only two topological states are possible: a transcriptionally inactive
configuration Ooff and a transcriptionally active configuration Pon. To account for this in our state in-
ference, we simplified our HMM hierarchical model by only modeling the Ooff ↔ Pon transitions with
rates f1 and b1. Thus, we had only four global parameters {σR(Pon), σI(OoffPon), σI(Pon), b1} and two
local parameters {σR(Ooff), f1} to infer from the no-homie data. The resulting inferred parameters are
displayed in Fig. S12. The state inference was then performed using this model specifically calibrated
on the no-homie data.

Based on the state trajectories, we find that there is still frequent transcriptional activity for genomic
separation 58 kb (8.5 ± 0.8%), but almost none (< 1% of time-points) for 149 kb (Fig. S13A). We further-
more compare the statistics of the 3D interlocus distance between the homie and no-homie constructs of
the same genomic separation. Due to the different statistics of the state dynamics in the two constructs,
we compare data from the Ooff state in both cases. We find that distance distributions largely overlap
(Fig. S13B). The two-locus MSDs also exhibit a similar shape and are well fitted by the ideal chain theo-
retical expression, although we observe small, but not systematic, differences in the two-locus diffusion
coefficient between homie and no-homie constructs (Fig. S13C).
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Figure S12: Calibration of the hierarchical HMM model for the no-homie data. (A) Posterior distributions of the global parameters P(Θ|D)
estimated using the no-homie data with genomic separation s = 58kb and s = 149kb. (B) Posterior distributions P(Θ|D) of the clone specific-
parameters, which vary with genomic separation s. (C) Comparison of the HMM-predicted open state lifetime T(Ooff) between the homie and
no-homie data.

Figure S13: The open state dynamics is not affected by the presence of homie. (A) All state trajectories for no-homie constructs with genomic
separations 58 and 149 kb. (B) Probability distributions of the inter-locus distances Rij. Blue: distribution for the Ooff state of homie constructs,
orange: distributions of the transcriptionally inactive state in no-homie constructs. (C) Two-locus MSD M2(t) with Rouse fits shown as red
lines.

3 Analysis of single-locus dynamics

The analysis of the motion of single chromosomal loci is only possible if any displacement and rota-
tion of the cell nucleus as a whole is corrected for, as this would affect the apparent dynamics of the
DNA loci. This problem does not affect relative measures based on the inter-locus distance vector Rij(t)
(section 4.1). In particular, correcting rotations is challenging as at least three loci need to be tracked to
infer global rotations. Previous works have therefore focused solely on the statistics of the inter-locus
distance [26, 35, 41], or, in recent work, relied on multi-locus tracking to correct global movement [27].
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In our system, however, the only global mode to be corrected is an overall affine translation of the cell
nuclei within the embryo, which we can correct by nucleus tracking in the xy-directions (section 1.3).
Nucleus tracking is difficult in the axial z-direction. Therefore, we estimate the statistics of single locus
diffusion using the xy-components of the dynamics.

To characterize the motion of single loci, we calculate the single-locus mean-square-displacement (MSD)
defined in each spatial dimension i = {x, y, z} as

M(i)
1 (t) =

〈
|ri(t0 + t)− ri(t0)|2

〉
t0
= Γ(i)

1 tβ (S25)

where averages are averages over time and samples. The 3D MSD is then given by M1(t) = M(x)
1 (t) +

M(y)
1 (t) + M(z)

1 (t). Assuming that all three spatial dimensions are identical, we estimate M1(t) from the

x and y components via M1(t) = 3
2 (M(x)

1 (t) + M(y)
1 (t)).
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Figure S14: Analysis of single-locus dynamics. (A) Single-locus MSDs M1(t) for the enhancer (blue) and promoter (green) for each genomic
separation s, estimated from xy-components of the trajectories. Dashed lines indicate linear fits to the first 5 data points. (B) Single-locus
MSDs M1(t) for s = 149 kb at two different imaging time-intervals ∆t = 5 s (grey) and ∆t = 30 s (blue). Thin lines indicate the MSDs of
single trajectories. (C) Single-locus diffusion coefficients Γ1 measured using the linear fits in panel (A)). (D) Single-locus diffusion exponents
β measured using the linear fits in panel (A). (E) Single-locus MSDs M1(t) for the three topological states Ooff (blue), Poff (cyan), Pon (red) for
each genomic separation s. Dashed lines indicate linear fits to the first 5 data points. All MSDs are given in nm2.

We find that the single-locus MSD is consistent across enhancer vs promoter loci, for different genomic
separations, for different imaging time intervals, and for the three inferred topological states (Fig. S14).

Additionally, we also report the velocity autocorrelation functions of single loci [34], given by

Cv(t) = ⟨v(δ)(t0) · v(δt)(t0 + t)⟩t0 (S26)

where velocities are calculated over variable time-interval δ = n∆t where ∆t is the imaging time-
interval: v(δ)(t) = (r(t + δ) − r(t))/δ. We find that these correlations collapse with δ and are well
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described by the Rouse model prediction [34, 55] (Fig. S15):

C(δ)
v (t)

C(δ)
v (0)

=
|t − δ|β + |t + δ|β − 2|t|β

2δβ
(S27)

enhancer
A

promoterB

increasing δ

Figure S15: Velocity autocorrelation functions Cv(t). (A) Left: C(δ)
v (t)/C(δ)

v (0) as a function of t with increasing δ for enhancer motion. Right:

C(δ)
v (t)/C(δ)

v (0) as a function of t/δ, showing that the functions collapse. Red line: Theory prediction for the Rouse model (Eq. (S27)) with
β = 1/2. Curves shown here are for s = 149 kb. Similar results are obtained for all other genomic separations. (B) Same as (A) for promoter
motion.

4 Analysis of two-locus dynamics

In this section, we provide details of how we test the theoretical predictions from section 5 using ex-
perimental data by calculation of two-locus MSDs, inference of the relaxation time (section 4.1) and
collapsing the two-locus autocorrelations (section 4.2). Note before any further analysis, we correct Rij
to account for chromatic aberration (section 1.4).

4.1 Two-locus MSD and relaxation time inference

The observed scaling of the single-locus MSD with an exponent close to 1/2 suggests as well as the
long-time scaling of the two-locus autocorrelation, which is close to the ideal chain exponent suggests
that we may fit the two-locus MSD with the analytical prediction obtained for the ideal chain Rouse
model [26]. We use the expression for an infinite continuous polymer; for discussion of the assumption
s ≪ N, see section 5:

M2(t) = 2Γ2t1/2(1 − e−τ/πt) + 2J erfc[(τ/πt)1/2] (S28)

where J = ⟨R2⟩ and τ = (J/Γ2)2. Note that we refer to the diffusion coefficient obtained from the two-
locus MSD as Γ2, while we write Γ1 for the single locus diffusion coefficient. For the ideal or crumpled
chain models, Γ1 = Γ2. However, we do not make this constraint on the data a priori.
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To explicitly test the assumed Rouse-like scaling of the diffusive part of the two-locus MSD, we examine
the exponent of the early-time subdiffusive regime (t ≪ τ). At the shorter genomic separations, our
data with ∆t = 30 s does not sample the regime t ≪ τ (Fig. S16A,B). Therefore, we focus on data sets
that contain at least five data points in the regime t < τ and fit the exponent β, which we find to be close
to the single-locus estimates and consistent with β = 1/2 (Fig. S16C).

A

B C

D eve locus (enhancers)
reporter (promoter)

two-locus

ideal ∼ t1/2

Figure S16: Subdiffusive exponents of the two-locus MSD and relaxation time estimation with simple intercept fitting. (A) Two-locus
MSDs M2(t) for each genomic separation. Solid lines show the value of 2⟨R2⟩. Dashed lines are fits of 2Γ2t0.5. Dotted lines show the intercept
of the fit with 2⟨R2⟩, providing an estimate for the relaxation time τ for each of the two scenarios. (B) All two-locus MSD curves collapsed
by normalizing time by the relaxation time and the MSD by the typical squared distance ⟨R2⟩. The points in the regime t ≪ τ show scaling
close to the ideal chain exponent of 1/2. (C) Subdiffusive exponents measured from two-locus MSDs for those data sets with at least five data
points in the regime t < τ (s = 148 kb, ∆t = 5 s; s = 595 kb; s = 3.3 Mb) (black data points), compared to results from the single locus MSDs
(blue and green data points). (D) Estimated cross-over times from both the Bayesian inference of the full Rouse dependence used in the main
text (Eq. (S28), black filled dots) and linear log-fits with the measured experimental dynamic exponent β = 0.52 (blue open squares), our lower
(β = 0.52 − 0.04 = 0.48; green) and upper bound (β = 0.52 + 0.04 = 0.56; red) of the dynamic exponent.

We find that the two-locus MSDs are well-fitted by Eq. S28, and the fitted value of J coincides with the
measured asymptote ⟨R2⟩ (Fig. S17A). Additionally, the presence of measurement errors in the tracking
affects the MSD curves, leading to an additive contribution of 4(σ2

x + σ2
y + σ2

z ), reflecting that the error
can be different in each spatial direction. We perform a Bayesian maximum likelihood fit of the two-
locus MSD using the python-library tracklib [26] with free parameters {J, Γ2, σz}. We use a log-uniform
prior for these parameters since they are real, positive, and have some unknown scale. We do not fit
measurement errors in the x and y-directions as the estimates for these errors obtained from such a
5-parameter fit are consistent with σx = σy = 0, and therefore not significant.
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To determine the inference errors on the fitted parameters, we perform bootstrapping as described in
refs. [82, 83]. Briefly, from each data set of N cell trajectories {rk}, where k = 1...N, we generate NBS
bootstrap realizations by randomly sampling N trajectories with a replacement for each realization.
To obtain the error in the parameters {J, Γ2, σz}, we infer their value for each bootstrap realization by
performing Bayesian MSD fitting on each realization and take the standard deviation of all obtained
fit parameters as our estimate for the error in each fit parameter. The distributions of the bootstrap
estimates are shown in (Fig. S17B-D), and range between 1 − 6% in the polymer parameters J, Γ2, with
larger errors in the inferred measurement error amplitude σz.

Γ2

J

σz

A
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C

D

MS
D

(nm
2 )

Figure S17: Two-locus MSD fitting and parameter inference. (A) Two-locus MSDs M2(t) for each genomic separation. Solid lines in colors
show the value of 2⟨R2⟩. Solid red lines show the fitted M2 with measurement error correction. Dashed red lines show the fitted asymptote
2J and dotted red lines show inferred relaxation time τ. (B-D) Distributions of the bootstrapped estimates for each parameter, normalised by
the maximum a posterior estimate of each parameter, θ/θMAP.

Furthermore, we demonstrate the accuracy of the relaxation time inference using ideal chain Rouse
simulations. Our sampling of the two-locus MSD is limited by two key factors: the imaging time interval
∆t and the maximum trajectory length tmax. We aim to infer the relaxation time scaling from a set of
genomic separations with minimum and maximum relaxation times τmin and τmax, corresponding to
the shortest and longest genomic separation. The inference will be limited if ∆t > τmin or tmax < τmax.
Based on the inference from experimental data, the shortest and longest genomic separations are close
to these thresholds (Fig. S17A). To test the accuracy of the inference in this case, we generate simulated
data with tmax/τmax = 1 (as in the experimental data for s = 3.3 Mb) and vary ∆t/τmin (Fig. S18A).
Experimentally, we have ∆t/τ̂min = 0.76 (for s = 58 kb). The larger this ratio, the more difficult the
inference. However, we find that the inference performs well for ratios as high as ∆t/τmin = 3, and
recovers the correct scaling of the relaxation times for various time intervals to relaxation time ratios
(Fig. S18B).

An alternative, simplified way to obtain an estimate of the relaxation time is by fitting the early time two-
locus MSD and measuring the intercept with the measured value of 2⟨R2⟩ (Fig. S16A). This intercept is
then given by τ ∼ (⟨R2⟩/Γ2)1/β. In Fig. S16B, we test this simplified approach for a range of assumed
β values, based on our measurement of β = 0.52 ± 0.04 from the single-locus MSDs. Specifically, we
fit using the mean estimate, β = 0.52, the lower bound β = 0.52 − 0.04 = 0.48, and the upper bound
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Figure S18: Testing the relaxation time inference on simulated ideal Rouse chains. (A) Two-locus MSDs M2(t). Blue symbols: measured
two-locus MSD from the simulations. Black solid lines: exact values of the MSD, the relaxation time, and the plateau 2⟨R2⟩. Orange dashed
lines: inferred values of these three quantities. Horizontal lines show the value of 2⟨R2⟩, vertical lines show inferred relaxation time τ. Rows
correspond to the five tested ∆t/τmin-ratios listed in the legend of panel b. (B) Exact (line) and inferred (symbols) relaxation time scaling for
varying ∆t/τmin.

β = 0.52 + 0.04 = 0.56. We find that this simplified approach recovers the strongly reduced scaling
exponent compared to the ideal Rouse expectation of γ = 2 for the full range of dynamic exponents.

Having obtained our estimate for the relaxation times, we compare them to the time scales of transi-
tioning from the Ooff state to the paired configuration, estimated from the HMM model: T(Ooff) = f−1

1 .
We find that these transition times correlate well with the relaxation time (Fig. S19A), and their absolute
value is larger by a factor of ten on average (Fig. S19B).
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Figure S19: Open state lifetimes increase with relaxation times. (A) Lifetime of the open state T(Ooff) as a function of the polymer relaxation
time τ. T(Ooff) increases with increasing τ. (B) Ratio of the open state lifetime T(Ooff) and the relaxation time τ as a function of the genomic
separation s. The ratio is approximately constant across genomic separation and its value corresponds to a factor 10 on average.
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s (kb) Nembryos Nnuclei σ̂z (nm) J (nm2) Γ2 (nm2s−1/2)

58 7 55 200 ± 13 (2.6 ± 0.1)× 105 (2.4 ± 0.1)× 104

82 4 59 177 ± 10 (4.5 ± 0.2)× 105 (3.0 ± 0.1)× 104

88 5 58 210 ± 26 (4.6 ± 0.2)× 105 (3.1 ± 0.1)× 104

149 30 579 204 ± 4 (5.73 ± 0.07)× 105 (3.23 ± 0.04)× 104

190 16 166 220 ± 10 (7.4 ± 0.2)× 105 (3.70 ± 0.07)× 104

595 16 164 213 ± 9 (1.1 ± 0.03)× 106 (4.7 ± 0.1)× 104

3328 10 179 340 ± 10 (2.1 ± 0.1)× 106 (4.35 ± 0.09)× 104

Table S6: Statistics of the trajectory data sets of all constructs. From left to right, the columns denote (i) the number of tracked embryos, (ii)
the total number of tracked nuclei, (iii) the estimated measurement error in the axial direction, obtained from the MSD fitting, (iv) the fitted
value of J, and (v) the fitted value of Γ2.

4.2 Two-locus autocorrelation collapse

We make use of the predicted collapse of the two-locus auto-correlation (ACF) (Eq. (S57)) to test the
quality of the collapse for the relaxation time exponents for various polymer models and compare them
to the anomalous scaling collapse S20. As expected, we find that the correlations do not collapse for
the ideal and crumpled chain relaxation time scaling exponents, but they do exhibit an approximate
collapse when using the measured relaxation time scaling γ = 0.7.

A

AC
F(

nm
2 )

B Rouse γ = 2 FG γ = 5/3 γ = 0.7

Figure S20: Two-locus autocorrelation collapse. (A) Two-locus ACFs C2(t) for each genomic separation. Solid lines in color: plateau value
2⟨R2⟩. Red line: ACF expected based on the fitted MSDs, C2(t) = (2⟨R2⟩ − M2(t))/2. (B) All ACFs plotted in absolute units without collapse.
(C) ACFs collapsed by the measured value of ⟨R2⟩ along the y-axis and with the ideal chain relaxation time scaling γ = 2. (D) Collapse using
the crumpled chain relaxation time scaling γ = 5/3. (E) Collapse using the measured anomalous relaxation time scaling γ = 0.7.

4.3 Velocity cross-correlations

Error-corrected correlation estimators: To measure the correlations in the joint motion of two loci in
absolute motion (within the frame of reference of the cell nucleus), we use the cross-correlations of
velocities, defined by

C(δ)
vv (t) = ⟨v(δ)

i (t0) · v(δ)
j (t0 + t)⟩t0 (S29)

These correlations are challenging to measure as the absolute motion is affected by the global motion of
the cell nuclei. Since the syncytial nuclei in the early Drosophila embryo are relatively stable and only
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exhibit slow affine translations, we correct for global motion in the xy-direction and estimate velocity
cross-correlations for the x and y components as done for single locus MSDs (section 3). To further
correct the random localization errors in the nucleus tracking, we derive error-corrected correlation es-
timators. As we show in Fig. S3D, measurement errors in the nucleus tracking are uncorrelated in time.
Importantly, however, even time-uncorrelated measurement errors can impact the estimated velocity
cross-correlations, because the nucleus movement is subtracted from the motion of both loci, which
may lead to spurious additional correlations in their apparent velocities. To overcome this issue, we
derive the noise correction terms of the velocity cross-correlations, providing correlation estimators that
are unbiased with respect to measurement noise.

Specifically, throughout, we consider the position of locus i in the frame of reference in the nucleus,

xi = ri − rn (S30)

where ri is the locus position in the lab frame and rn is the nucleus position in the lab frame. Our
measurement of these positions contains measurement noise, and thus

r̂i = ri + σrηi(t) (S31)
r̂n = rn + σnξ(t) (S32)

where we assume temporally uncorrelated measurement errors, i.e. ⟨ηi(t)⟩ = ⟨ξ(t)⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ =
δijδ(t − t′) and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). Here σr is the measurement noise in locus tracking and σn is the
measurement error in the nucleus tracking. Combining these assumptions, we find

r̂i = ri + σrηi(t)− σnξ(t) (S33)

and thus

v̂(δ)i (t) = (x̂i(t + δ)− x̂i(t))/δ (S34)

= v(δ)i (t) +
σr

δ
[ηi(t + δ)− ηi(t)] +

σn

δ
[ξ(t + δ)− ξ(t)] (S35)

Multiplying out, we can therefore find the correction terms to various correlation functions. First, we
consider the correlation of the locus velocity with the nucleus velocity:

⟨v̂(δ)i (t)v̂(δ)n (0)⟩ = ⟨v(δ)i (t)v(δ)n (0)⟩+


−2σ2

n/δ2 t = 0
σ2

n/δ2 t = δ

0 otherwise

(S36)

This shows that under the assumption of uncorrelated noise, this correlation should vanish except for
τ = {0, δ}, which we verify on the experimental data, validating the assumption of time-uncorrelated
tracking errors (Fig. S3D).

Similarly, in the velocity cross-correlations, most terms due to measurement noise average to zero, but
the terms due to nucleus tracking errors do not, as the same random error affects both loci:

Ĉvv(t) = ⟨v̂(δ)i (t)v̂(δ)j (0)⟩ (S37)

= Cvv(t) +


2σ2

n/δ2 t = 0
−σ2

n/δ2 t = δ

0 otherwise

(S38)
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Similarly, for the velocity autocorrelation, we obtain

Ĉv(t) = ⟨v̂(δ)i (t)v̂(δ)i (0)⟩ (S39)

= Cv(t) +


2(σ2

n + σ2
r )/δ2 t = 0

−(σ2
n + σ2

r )/δ2 t = δ

0 otherwise

(S40)

Note that the above derivation was done in 1D, for 3D all contributions simply add up, meaning that
σ2

n → σ2
n,x + σ2

n,y + σ2
n,z. Importantly, these corrections show that errors scale with the time-interval δ at

which velocities are calculated. Consequently, we find that the estimated velocity cross-correlations are
more strongly affected at small δ. To identify how large δ should be for our estimate to be robust against
measurement noise, we plot the cross-correlation intercepts Cvv(0)/Cv(0) as a function of δ for different
values of the estimated measurement error. Based on the fitted measurement errors from the two-locus
MSDs (section 4.1), we expect σ ≈ 200µm. We find that for δ in the range of 5− 60 s, the estimated cross-
correlations are strongly affected by realistic measurement error amplitudes (Fig. S21A). In contrast
for δ > 60 s, the correlations are largely insensitive to realistic measurement errors for all genomic
separations (Fig. S21B). The larger δ, however, the smaller the sample size of available time windows
in a finite trajectory, resulting in larger random errors. As a tradeoff, we focus our analysis of velocity
cross-correlations on δ = 90 s but additionally show variation with δ in Fig. S22.

s = 149 kb δ = 300 sA B C

10 %

Figure S21: Error-correction of the velocity cross-correlations. (A) Normalized velocity cross-correlations as a function of the time-interval δ
for s = 149 kb. Open symbols: data acquired at imaging rate ∆t = 5.4 s. Closed symbols: data acquired at imaging rate ∆t = 30 s. Different
colors correspond to error-corrected correlations assuming different measurement errors (measured in µm), were we take σn = σr = σ. We
plot the error-free correlations Cvv(0)/Cv(0) calculated from Ĉvv(0)/Ĉv(0) according to Eqs. (S37), (S39). (B) Fractional error in the velocity
correlations in panel a due to the measurement error contribution, in percent. The dashed line indicates the 10% mark. For δ > 90s, the errors
are < 10% for all values of σ. Colors as in panel (A). (C) Normalized velocity cross-correlations as a function of the genomic separation s for
δ = 90 s. Colors as in (A).

Theory prediction of velocity cross-correlations: The velocity cross-correlation of two loci in the ideal
chain Rouse model have been calculated analytically in ref. [55]. Importantly, in the limit s ≪ N, where
N is the total polymer length, and δ ≪ τN , where τN is the relaxation time of the whole polymer,
the cross-correlations of two loci separated by genomic separation s are completely determined by the
dimensionless ratio δ/τ, where τ is the relaxation time of the segment s. The correlations are calculated
using the tabulated values in ref. [55] (using viscoelastic exponent α = 1).

Thus, we can predict the velocity cross-correlations expected based on the inferred relaxation times
without any free fitting parameters. We predict the correlations for varying s based on the scaling of
relaxation times τ = Asγ. First, we predict the expected correlations assuming an ideal chain Rouse
scaling of the relaxation time, i.e. γ = 2. In main text Fig. 4H, we use the prefactor A based on the
relaxation time of the shortest genomic separation to the largest genomic separation, i.e. A(s)

ideal = τ/s2.
Here, we additionally demonstrate the ideal chain prediction for varying A, showing that the prediction
fails for any possible value of A (Fig. S22A).
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To predict the correlations expected based on the anomalous scaling that we find in experiments, we
use the measured value of A = 1.89 s·kb−γ and γ = 0.7. Thus, both parameters are fixed based on the
experimental data with no additional fitting, giving the blue line in Fig. S22A. Based on the arguments
in the previous section, suggesting that larger time intervals δ are less affected by measurement errors,
we use δ = 300 s in the main text figure. Here, we additionally show the correlations for varying values
of δ (Fig. S22B,D). The functional dependence of the correlations on δ is shown in Fig. S22C. We find
that the correlations are generally well predicted by the theory curves that are completely constrained
by the inferred relaxation time, with no further fitting involved.

D

A B

C

δ = 90 s

δ = 150 s

δ = 210 s

δ = 300 s

Figure S22: Theory prediction of velocity cross-correlations. (A) Comparison of experimental correlations to predictions based on the ideal

Rouse scaling τ = As2, for varying values of A, calculated to match increasing values of s = {58 kb, 595 kb, 3.3 Mb}, using A(s)
ideal = τ/s2 =

{0.023, 8.1 × 10−4, 1.01 × 10−4} s·kb−2 (green curves). (B) Anomalous scaling prediction compared to experimental data for various time-
intervals δ. (C) Velocity cross-correlations as a function of the time-interval δ (colors), as predicted by the anomalous relaxation time scaling
(solid lines) compared to experiments (symbols) (D) Velocity cross-correlation functions Cvv(t)/Cv(0) as a function of t/δ for varying δ for
each genomic separation. All error bars correspond to bootstrap errors.
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5 Two-locus dynamics: theory

In this section, we provide a synthesis of the literature on the scaling exponents measured in this paper
and explain the theoretical arguments underlying our analysis and interpretation of two-locus dynam-
ics.

Two-locus MSD: Here, we provide details of how we quantify the joint dynamics of two coupled DNA
loci using the two-locus MSD:

M2(t) =
〈∣∣Rij(t0 + t)− Rij(t0)

∣∣2〉
t0

(S41)

i.e. the MSD of the 3D interlocus distance vector Rij(t) = r1(t)− r2(t), where r1,2 are the 3D positions of
the two loci.

The two-locus MSD gives insight into the coupled dynamics of the two loci, with two simple limits: at
small times t ≪ τ, we expect the two-locus MSD to simply reflect the independent diffusion of the two
loci, while at large times t ≫ τ, the MSD approaches a plateau given by the equilibrium size of the
chain. Here, τ is the relaxation time which quantifies the cross-over between the two regimes.

In the large-time regime, the chain segment connecting the two loci has fully relaxed (under the assump-
tion that the system reaches a steady state), meaning that the two-locus MSD is given by the equilibrated
size of the chain

M2(t → ∞) → 2⟨R2⟩ (S42)

where ⟨R2⟩ = ⟨|Rij|2⟩. For a fractal polymer chain configuration, the average 3D RMS-distance
√
⟨R2⟩

scales with the genomic separation s: √
⟨R2⟩ ∼ sν (S43)

where the static exponent ν = 1/d is determined by the fractal dimension d of the polymer. The fractal
dimension is d = 2 for an ideal chain polymer and d = 3 for a crumpled chain.

In the small-time regime, the chain segment connecting the two loci has not had sufficient time to relax,
and hence the two loci move independently, meaning that the two-locus MSD is given by the sum of the
single-locus MSDs:

M2(t ≪ τ) ≈ 2M1(t) = 2Γtβ (S44)

Importantly, the dynamic exponent β can be related to the static exponent ν, and thus the fractal dimen-
sion d under specific assumptions for the dynamics of the polymer, which we detail below. To avoid
confusion, we try to be specific about which assumptions relate to the statics and which to the dynam-
ics. For statics, we use the terms ”ideal” and ”crumpled chain statistics” for fractal dimensions d = 2
and d = 3, respectively. For the dynamics of such ideal or crumpled chains, we use the term ”general-
ized Rouse assumption” to refer to the assumption of independent viscous friction on each monomer,
consistent with the terminology in [39].

Generalized Rouse approach: Within the framework of a generalized Rouse approach, β can be related
to the static properties for arbitrary fractal dimension d [37, 39, 53]:

β =
2

2 + d
(S45)
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This is derived as follows: at a time-lag t, due to stress propagation, a region of spatial size ℓ ∼ tβ/2 be-
haves effectively as a single monomer. Then, the key assumption is the so-called ‘free-draining’ limit, i.e.
only local friction on every monomer and no hydrodynamic interactions. Thus, the effective diffusion
coefficient D of this region then scales with the number of monomers contained within the region, which
is determined by the fractal dimension: D ∼ ℓ−d. Therefore, the MSD of the region is Dt ∼ t1−βd/2,
which yields Eq. (S45). Eq. (S45) then yields β = 1/2 for d = 2 and β = 2/5 for the crumpled chain
(d = 3).

Zimm model: The Zimm model describes polymers that have a hydrodynamic self-interaction [54],
meaning that the monomer beads do not only interact with their nearest neighbors through the springs
linking them, but through long-ranged hydrodynamic interactions. Within the Zimm model, the dy-
namic exponent is independent of the fractal packing dimension d and is given by β = 2/3.

Relaxation time scaling: To quantify the time-scale on which the cross-over between the two regimes
(Eq. (S42) and Eq. (S44)) occurs, we focus on the relaxation time τ. The relaxation time can be estimated
as the time taken for the two loci to diffuse their typical distance of separation [39]. In terms of the
two-locus MSD, this time scale is therefore given by the intersection of the diffusive part (Eq. (S44)) and
the long-time plateau (Eq. (S42)):

2Γ2τβ ∼ 2⟨R2⟩ (S46)

Based on this relationship, we can infer the relaxation times from the experimental two-locus MSD
curves, as shown in detail in section 4.1. Furthermore, Eq. (S46) predicts the scaling of the relaxation
time with genomic separation for different fractal dimensions for both the generalized Rouse and the
Zimm models:

τβ ∼ s2/d → τ ∼ sγ with γ = 2/(βd) (S47)

We thus obtain the classical relaxation time scaling for the ideal chain Rouse model:

τ1/2 ∼ s → τ ∼ s2 (S48)

For a crumpled chain described by the generalized Rouse model, both the diffusion exponent and the
packing exponent change, and we therefore obtain

τ2/5 ∼ s2/3 → τ ∼ s5/3 (S49)

Thus, the relaxation time exhibits a weaker scaling with genomic separation in the crumpled chain
model (exponent ≈ 1.66) than in the ideal chain model (exponent 2). These two exponents are shown as
the theoretical predictions in the main text Fig. 4.

We can make the same arguments based on the exponents of the Zimm model for ideal and crumpled
chains. Thus, for the ideal chain Zimm model,

τ2/3 ∼ s → τ ∼ s3/2 (S50)

For a crumpled chain described by the Zimm model, we obtain

τ2/3 ∼ s2/3 → τ ∼ s1 (S51)

These various results are summarised in Table S7.
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dynamicsstatics Rouse Zimm

general d

ideal chain
d = 2

crumpled chain
d = 3

γ = (2 + d)/d
β = 2/(2 + d) β = 2/3

γ = 3/d

β = 1/2
γ = 2

β = 2/3
γ = 3/2

β = 4/5
γ = 5/3

β = 2/3
γ = 1

Table S7: Overview of exponents β, γ expected for various combinations of statics (ideal/crumpled) and dynamics (Rouse/Zimm).

Two-locus autocorrelation function: Besides the two-locus MSD, a second quantity that quantifies the
joint dynamics of two loci based on the interlocus distance vector is the two-locus autocorrelation, given
by

C2(t) =
〈
Rij(t0 + t) · Rij(t0)

〉
t0

(S52)

The quantities M2 and C2 contain the same information since they are directly related to each other
through the relationship [26]

M2(t) = 2(C2(0)− C2(t)) (S53)

However, the function C2 gives access to the scaling exponents that characterize the approach to equili-
bration in the long time limit t ≫ τ, which are ‘washed out’ in the cross-over to the plateau in M2.

Specifically, for C2, the short time behaviour (t ≪ τ) is determined by the chain size:

C2(t → 0) = ⟨R2⟩ (S54)

The asymptotic power-law behavior of the two-locus correlation function in the limit t ≪ τ has been
derived based on the generalized Rouse framework [39], predicting that it decays with a power-law
whose exponents depend on the fractal dimension:

C2(t) ∼ t−λ (S55)

where
λ = 2

d − 1
2 + d

(S56)

which gives λ = 1/2 for ideal and λ = 4/5 for crumpled chains. Note that this derivation additionally
assumes s ≪ N, where N is the total length of the chromosome. In our system (Drosophila chromosome
2L), N = 25 Mb, significantly larger than the typical genomic separations we probe (58 kb − 3.3 Mb).
Furthermore, we do not see any signatures of whole chain relaxation in the single-locus MSDs (Fig. S14),
suggesting this assumption is valid. Thus, the two-locus autocorrelation can be used to quantify the
approach to equilibration of the system, which is separate from the small-time scaling of the two-locus
MSD, quantified by exponent β, which is determined by the independent diffusion of the loci.

Finally, we can use the two-locus autocorrelation as an additional way to infer the relaxation times by
collapsing the autocorrelations onto a single master curve. Specifically, we expect the correlations to
collapse onto the mastercurve [39]

C2(t̃) ∼ s−2/dC2(ts−γ) (S57)
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where γ is the exponent of the relaxation time, τ ∼ sγ. Thus, by quantifying the collapse of C2 for
varying s, we can identify the scaling exponent γ (see section 4.2).

6 Comparison to mESC data

To compare our quantitative results to previous measurements of live imaging of pairs of DNA loci,
we make a side-by-side comparison of our data set with that in ref. [26], where CTCF sites in the Fbn2
locus imaged in mouse embryonic stem cells (mESCs) were tagged with a genomic separation of 515 kb
between fluorescent tags (C36 line). We compare our closest genomic separation to this data (595 kb)
and find that both average distances and diffusive time scales are much higher in our system. Specifi-
cally, while the average distance for mESCs is ⟨R⟩ ≈ 0.35µm, we find ⟨R⟩ ≈ 1.05µm, a factor 3 larger.
Furthermore, the two-locus diffusivity Γ2 = 0.0024µm2s−1/2 for mESCs, and Γ2 = 0.045µm2s−1/2 in our
system, almost 20-fold larger. As a result, despite the larger physical distance between the two loci, the
relaxation time is almost an order of magnitude shorter than observed in ref. [26].

A B

Figure S23: Two-locus analysis compared to data from ref. [26]. (A) Probability distributions of the inter-locus distances Rij. Blue: our data
for s = 595 kb (all states), orange: data of CTCF sites in the Fbn2 locus imaged in mouse embryonic stem cells (mESCs), with a genomic
separation of 515 kb (C36 wildtype line) [26]. (B) Localization-error corrected two-locus MSDs for both data sets (open symbols). Solid line:
Fit of Eqn. (S28). Solid horizontal line: 2⟨R2⟩. Dashed vertical line: the fitted value of the relaxation time τ.
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7 Code and software

Code and software used in this paper are listed in Table S8.

Name Reference URL

DynamicChromosome [70] https://github.com/dbrueckner/DynamicChromosome

numpy 1.22.0 [84] https://numpy.org/

scipy 1.4.1 [85] https://scipy.org/

matplotlib 3.1.3 [86] https://matplotlib.org/

tracklib [26] https://github.com/SGrosse-Holz/tracklib

Matlab 2020b − https://mathworks.com/products/matlab.html

Table S8: List of software used.
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Movie description

Supplementary Movies S1-S7
Three-color live imaging of two loci on the second Drosophila chromosome separated by increasing ge-
nomic distances of {57.8, 81.7, 87.5, 148.7, 189.6, 595.1, 3327.7} kb. The embryo is 2 h old. Movie starts at
27 min in cell cycle 14 and ends at 55 min. Blue spots mark eve-MS2 transcription as well as the physical
position of the eve locus and eve enhancers. Green spots are from the parS sequence, which marks the
location of the reporter construct. Red spots mark transcriptional activity from the PP7 reporter. Scale
bar: 5 µm.
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