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Positional information, in bits
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Cells in a developing embryo have no direct way of “measuring”
their physical position. Through a variety of processes, however,
the expression levels of multiple genes come to be correlated with
position, and these expression levels thus form a code for “posi-
tional information.” We show how to measure this information, in
bits, using the gap genes in the Drosophila embryo as an example.
Individual genes carry nearly two bits of information, twice as
much as would be expected if the expression patterns consisted
only of on/off domains separated by sharp boundaries. Taken to-
gether, four gap genes carry enough information to define a cell’s
location with an error bar of ~1% along the anterior/posterior
axis of the embryo. This precision is nearly enough for each cell to
have a unique identity, which is the maximum information the
system can use, and is nearly constant along the length of the
embryo. We argue that this constancy is a signature of optimality
in the transmission of information from primary morphogen inputs
to the output of the gap gene network.

gene regulatory networks | embryonic development | optimization

uilding a complex, differentiated body requires that in-

dividual cells in the embryo make decisions, and ultimately
adopt fates, that are appropriate to their position. There are
wildly diverging models for how cells acquire this “positional
information” (1), but there is general consensus that they encode
positional information in the expression levels of various key
genes. A classic example is provided by anterior/posterior pat-
terning in the fruit fly, Drosophila melanogaster, where a small set
of gap genes and then a larger set of pair rule and segment
polarity genes are involved in the specification of the body plan
(2). These genes have expression levels that vary systematically
along the body axis, forming a blueprint for the segmented body
of the developed larva that we can “read” within hours after the
start of development (3).

Although there is consensus that particular genes carry posi-
tional information, less is known quantitatively about how much
information is being represented by the expression levels in in-
dividual cells. Do the broad, smooth expression profiles of the
gap genes, for example, provide enough information to specify
the exact pattern of development, cell by cell, along the anterior/
posterior axis? How much information does the whole embryo
use in making this pattern? Answering these questions is im-
portant, in part, because we know that crucial molecules involved
in the regulation of gene expression are present at low concen-
trations and even low absolute copy numbers, so that expression
is noisy (4-10), and this noise must limit the transmission of
information (11-14). Is it possible, as suggested theoretically
(15-18), that the information transmitted through these regula-
tory networks is close to the physical limits set by the irreducible
randomness of counting individual molecular events? To answer
this and other questions, we need to measure positional in-
formation quantitatively, in bits. We do this here using the gap
genes in Drosophila as an example.

There are many ways in which positional information could be
represented during the process of development. Cells could
make decisions based on the integration of signals over time or
by comparing their internal states with those of their neighbors.
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Eventually, the internal state of each individual cell must carry
enough information to specify that cell’s fate, but it is not clear at
what point in development this happens. Thus, when we look at
the gap genes during the 14th nuclear cycle after fertilization,
there is no guarantee that their expression levels will carry all the
information that cells eventually will acquire, either from ma-
ternal inputs or via communication with their neighbors. Because
our experimental methods give us access to snapshots of gene
expression levels, however, we will start by asking how much
positional information is carried by local measurements in
individual cells at a moment in time. These expression levels
themselves reflect an integration of many inputs over space and
time (9, 19), but these molecular mechanisms do not influence
the definition or measurement of the information that the ex-
pression levels carry.

Quantifying Information

In the early stages of development, different cells have essen-
tially the same morphology, at least in the bulk of the embryo,
away from the poles. Thus, if we do not look at the expression
levels of the relevant genes, we have no information about the
position of the cell; it could be anywhere along the anterior/
posterior axis of the embryo. Mathematically, this is equivalent
to saying that, a priori, the position x of the cell is drawn from
a distribution of possibilities, Py(x). Once we observe the ex-
pression level g, we still do not know the precise position x of the
cell, but our uncertainty is greatly reduced. In Fig. 1, we illustrate
this idea using the gap gene hunchback (hb). Expression levels
of hb vary systematically along the anterior/posterior axis of the
Drosophila embryo, but these expression levels also are variable
across cells in the same position, both within a single embryo and
across multiple embryos. Thus, if we make a “slice” through the
expression profile at some particular level g, we cannot point
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uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, P(x|g), that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution Py(x).

The probability distributions P.(x) and P(x|g) provide the
ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20-22).

For any probability distribution, we can define an entropy S,
which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

SIPu(w) = - / dx P,(0)log, [P,(0)], (1]

SIP(g)] = - / dx P(x|g)log, [P(x|2)]. 2]

For example, if we measure x from 0O to L along the length of
the embryo, then a uniform distribution of cells corresponds
to Pi(x)=1/L, and this has the maximum possible entropy
S[Py(x)] =log,(L). The intuition that the conditional distribution
P(x|g) is narrower or more concentrated than P, (x) is quantified
by the fact that the entropy S[P(x|g)] is smaller than S[P,(x)], and
this reduction in entropy is exactly the information that observing
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Fig. 1. Positional information carried by the ex-

pression of Hb. (A) Optical section through the

midsagittal plane of a Drosophila embryo with im-

AS=1.4 bits munofluorescence staining against Hb protein.
20 (Scale bar = 100 pm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
10 expression level g, from 24 embryos (light red dots)
M selected in a 38- to 48-min time interval after the

0 beginning of nuclear cycle 14. Position x along the
0 0.5 1 anterior/posterior axis is normalized by the length L
- of the embryo; x/L=0 corresponds to the anterior

20 A8=2.14 bits end of the embryo, and x/L=1 corresponds to the
posterior end. Means g(x) and SDs o4 (x) are plotted
in darker red. Considering all points with g =0.1, 0.5,

10 or 0.9 (Left), yields the conditional distributions with
J\ probability densities P(x|g) (Right). Note that these
0 distributions are much more sharply concentrated

0 05 1 than the uniform distribution P, (x) shown in light

AS=2.18 bits gray; correspondingly, the entropies S[P(x|g)] are very
20 much smaller than the entropy S[Px(x)]. For each g, we
note the reduction of uncertainty in x by reading out
10 n g, AS=S[Px(x)] - S[P(x|g)]. (C) Variations in expression
0 h the distribution of normalized relative expression,
X given by A=[g—g(x)]/aq(x) (red circles with SEMs).

x/L The solid line is a zero mean/unit variance Gaussian.

level around the mean at each position, estimated by

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Ax, then the gain
in information is I(g) = S[P,(x)] — S[P(x|g)] = log, (L /Ax)bits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).

If we look at one cell and observe expression level g, then we
gain information

I(g)=S[P:(x)] —S[P(x|g)]. [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution Pg(g). The average in-
formation that this expression level provides about position is then

I = / dg Py(g) (SIP:(x)] - SIP(xlg)]) [4]

= /dg/cbcP(g,x)log2 {}%}, [5]

where P(g,x) is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, I,_., =I,_,. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).

Because information is mutual, we can also write I,_, in terms
of the distribution of expression levels g that we find in cells at
a particular position, P(glx),

Dubuis et al.
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This emphasizes that the amount of information that can be
conveyed is limited both by the overall dynamic range of ex-
pression levels, which determines S[P,(g)], and by the variability
or noise in expression levels at a fixed position, which is mea-
sured by S[P(glx)]. It will be useful that the distribution of ex-
pression levels at each point, P(glx), is approximately Gaussian,
as shown in Fig. 1C.

In what follows, we will use Eq. 6 to make a “direct” mea-
surement of information, whereas Eq. 4 invites us to try and
“decode” the information carried by the expression levels to
recover estimates of the position x of each cell. Each approach
has a natural generalization to the case where information is
conveyed not by the expression level of one gene but by the
combined expression levels of multiple genes {gi}, and we will
explore this as well. It is important to emphasize that the number
of bits of information carried by the gene expression levels has
meaning independent of the mechanisms by which this coding is
established. Thus, at one extreme, it could be that each cell sets
its expression levels independently in response to some primary
morphogen [e.g., Bicoid in the Drosophila embryo (23-25)]
whereas at the other extreme, the spatial patterns of expression
could arise entirely from communication between neighboring
cells, in a Turing-like mechanism (26, 27). In these different
extremes, the precise value of the positional information places
different quantitative constraints on the underlying mechanisms;
however, in all cases, the number of available bits tells us about
the reliability and complexity of the pattern that can be con-
structed from the local expression levels alone.

Information Carried by Single Gap Genes

Estimating the mutual information that one gene expression
level provides about position requires, from Eq. 6, that we obtain
a good estimate of the conditional distribution P(glx). Using
immunofluorescent staining, we can measure g vs. x along the
anterior/posterior axis of single Drosophila embryos, and by
making such measurements on multiple embryos, as shown in
Fig. 1, we obtain many samples of the expression level at cor-
responding positions; from these samples, we can then build up
an estimate of the distribution P(glr). Armed with this estimate,
we can use Eq. 6 to compute the positional information. To be
sure that the answer is meaningful, we have to address a number
of technical issues (28).

First, as explained at the outset, we would like to measure the
information carried by a snapshot of the expression levels, so
we need to make measurements on embryos at a well-defined
time, and we use the length of the cellularization membrane as
a precisely calibrated proxy for time (29-32). We choose this
time to be the window from 38 to 48 min after the start of nu-
clear cycle 14, because we have seen that gap gene expression
levels are at a plateau in this window. We also confine our at-
tention to the central 80% of the anterior/posterior axis, because
quantitative imaging at the poles is more difficult and because
there are additional genes associated specifically with terminal
patterning, and we make measurements along the dorsal edge of
the midsagittal plane.

Second, Fig. 1 shows that the SD of expression levels typically
is less than 10% of the maximum expression level. To draw
convincing quantitative conclusions, then, we must be sure that
our measurements have accuracy much better than this, lest we
confuse experimental error for real noise and variability in the
system. As discussed by Dubuis et al. (28), the intensity of
immunostaining is linear in protein concentration over the rel-
evant dynamic range (also ref. 9), and errors can be minimized by
careful attention to the orientation and age of the embryos. By
comparing large numbers of embryos stained in a single batch,
we find that there is little or no sign of errors due to variations in
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the efficiency of staining, which means we can avoid previously
troubling issues surrounding the normalization of profiles across
embryos (details are provided in Materials and Methods). When
the dust settles, our experimental or measurement errors are
below ~3% of the maximal expression level, and hence well
below the observed noise levels (28). Note that measurement
errors will always reduce the information, and so our estimate
defines lower bounds on the information carried by the real
biological signals.

Finally, as has been addressed in other contexts (Materials and
Methods), care is required to be sure that the finite number of
samples we collect is sufficient to get a reliable estimate of /,_, ;
however, once we have control over the potential systematic
errors, the statistical errors in our measurements are very small.
Analysis of the data in Fig. 1 shows that the expression level
of Hb provides I, x=2.26 £0.04 bits of information about
the position of a cell along the middle 80% of the anterior/
posterior axis. We can repeat this analysis for the gap genes
kriippel (Kr), giant (Gt), and knirps (Kni), in addition to Hb,
and we find I, _, =1.95+0.07 bits, I, ., =1.84 +0.05 bits, and
Ly~ =1.75£0.05 bits.

In all cases, the expression of a single gene carries much more
than one bit of information; indeed, it carries more nearly two
bits. The conventional view of the gap genes is that they are
characterized by domains of expression, with boundaries, and
the sharpness of the boundary often is taken as a measure of
precision. However, if the patterns of expression were perfect
on/off domains with infinitely sharp boundaries, then the ex-
pression level could provide at most one bit of information
about position. Our result that gap genes provide nearly two bits
of information about position demonstrates that intermediate
expression levels are sufficiently reproducible from embryo to
embryo that they carry significant amounts of positional infor-
mation, and that the view of domains and boundaries misses
almost half of this information.

How Much Information Does the Embryo Use?

At best, every nucleus could be labeled with a unique identity, so
that with N nuclei, the embryo could make use of log, N bits
(21). Along the anterior/posterior axis, we can count nuclei in
a single midsagittal slice through the embryo, and in the middle
80% of the embryo, where the images are clearest, we have
N =58+4 along the dorsal side and N =59 + 4 along the ventral
side, where the error bars represent SDs across a population of
57 embryos in nuclear cycle 14; this corresponds to 5.9 +0.1 bits
of information. However, do individual cells, in fact, “know”
their identity? More precisely, are the elements of the anterior/
posterior pattern specified with single-cell resolution?

Several experiments suggest that elements of the body plan in
the larval fly that emerges from the embryo can be traced to
identifiable rows of cells along the anterior/posterior axis (33),
which is consistent with the idea that at least some single rows
of cells have a reproducible identity. Quantitatively, we can ask
about the reproducibility of various pattern elements in early
development, elements that appear not long after the expression
patterns of the gap genes are established. A classic case is the
cephalic furrow, which can be observed in live embryos and is
known to have a position along the anterior/posterior axis that is
reproducible with an accuracy of ~ 1% of the embryo length (34).

Is the cephalic furrow special, or can the embryo more gen-
erally position pattern elements with ~ 1% accuracy? The stri-
ped patterns of pair rule gene expression allow us to ask about
the position of multiple pattern elements, seven peaks and six
troughs of expression along the anterior/posterior axis. As shown
in Fig. 2, all these elements have positions that are reproducible
to within 1% of the embryo length. This strongly suggests that all
cells know their position along the anterior/posterior axis with
a precision oy /L ~1%.

The distance between neighboring nuclei is dx/L =0.8/N =
0.014 +0.001 of the embryo’s length. If cells know their position
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Fig. 2. Reproducibility of multiple pattern elements along the anterior/
posterior axis. (A) Optical section through the midsagittal plane of a
Drosophila embryo with immunofluorescence staining against even-skipped
(Eve) protein. (Scale bar = 100 pm.) (B) Normalized dorsal profiles of fluo-
rescence intensity from 12 embryos selected in a 45- to 55-min time window
after the beginning of nuclear cycle 14 (light blue lines); the dorsal profile of
the top panel embryo is shown in darker blue. (Inset) Zooming in on a single
peak, we can measure the SD of both the expression level and position of
this element in the pattern. (C) Summary of results from such measurements
on Eve (blue) and Runt (magenta), plotting the SD of the position o as
a function of the mean position X, together with a similar measurement on
the reproducibility of the cephalic furrow (33). Note that all the elements are
positioned with 1% accuracy or better.

with 1% accuracy, this error is smaller than the internuclear
spacing, suggesting that every cell indeed has a specified position.
However, this is not quite right, because errors are probabilistic
and probability distributions have tails. Specifically, if the best we
(or the cells) can do is to specify positions with an error that has
an SD of ¢,/L=0.01, and the errors come from a Gaussian
distribution, then there is a probability P ~0.08 that we will be
off by éx/L =0.014 or more in one direction. This confusion
means that the reproducibility of pattern elements in Fig. 2
provides evidence for individual nuclei having access to
I=1log,(0.8L /o,\/2me) = 4.27 bits of information (22), although
more may be available, as discussed below.

Decoding the Information Carried by Multiple Genes

Do the four gap genes, taken together, carry enough information
to specify position with ~ 1% accuracy? To answer this question,
we need to know not just the distribution of expression levels for
single genes at each point x along the anterior/posterior axis but
the joint distribution of all the expression levels. The major
difficulty in such an experiment is to avoid spectral cross-talk
among the different fluorescence signals, but for the experiments
shown in Fig. 3, we have shown that cross-talk is ~1% or less
(28, 30), and, as noted in Materials and Methods, modest amounts
of cross-talk actually do not change our estimate of o, or the
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information. Given that we can sample the joint distribution of
expression levels, how do we estimate the information that these
expression levels carry?

We observe the expression levels g;, with i=1(Hb), 2(Kr), 3(Gt),
4(Kni). At each pointx, there are average values of these expression
levels g;(x), and across an ensemble of embryos, there are fluctua-
tions &gi. Let us assume that these fluctuations have a Gaussian
distribution. If we look just at one gene, this means that the statistics
of the fluctuations are described completely by the mean and the
variance o7 (x), so that if we look at the same position x in many
embryos, we will see a distribution of expression levels

(gi—gi(x))z:|7

1
P(gilx)= exp { [7]
2rn0?

and this is in reasonable agreement with the data, as shown for
the case of Hb in Fig. 1C (results for other genes are similar). If
we look at many genes simultaneously, we have not just the
variances of each gene but the correlations or covariances among
the genes, which define a matrix Cjj(x). The joint distribution of
expression levels at one point is then

= ow[-F({g))
(27)*det C

4

(gi —8&i (x)) (C_l)ij (gj _gj (x))7

ij=1

P({gi}lx)
[8]
F({gi}) =

N =

where C! denotes the inverse of the matrix C and det C denotes
its determinant. We can estimate all the elements of the covari-
ance matrix, at every position x, in the usual way, averaging over
samples taken from multiple embryos.

As an aside, we note that most of the significant off-diagonal
elements of the covariance matrix are negative. For example, if
the expression level of Hb happens to be a bit above average at
one point in a single embryo, then the expression of Kr will be
a bit below average at that same point. Presumably, this reflects
the mutually repressive interactions among the gap genes (35-37).

The distribution P({g;}|x) characterizes the measurements
that we can make as an outside observer of the embryo. How-
ever, a single nucleus does not have access to the position x;
rather, the whole idea of positional information is that this po-
sition is encoded in the expression levels. To assess the quality
of this code, we can try to read it, asking for the distribution

Kni (488nm) r (546nm) Gt (594nm) Hb (647nm)

0 0.5 1 0 0.5 1
x/L x/L

Fig. 3. Simultaneous measurements on four gap genes reproduced, in part,
from the work of Dubuis et al. (28). (Upper) Optical sections through the
midsagittal plane of a single Drosophila embryo with immunofluorescence
staining against Kni (green), Kr (yellow), Gt (orange), and Hb (red), with
fluorescence excitation wavelengths in parentheses. (Scale bar = 100 pm.)
(Lower) Normalized expression levels along the dorsal edge for 24 embryos
in a 38- to 48-min time interval after the start of nuclear cycle 14 (light
colors); the sample embryo is highlighted (dark colors).
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of positions that are consistent with a particular set of expression
levels that we might observe. By Bayes’ rule, this can be written as

P({gi} ) Px(x)
Po({ai})

where Py (x) is, as before, the (nearly uniform) distribution of cell
positions and P,({gi}) is the (joint) distribution of expression
levels averaged over all cells in the embryo.

If the noise levels are small, then P(x|{gi}) will be sharply
peaked at some x.({gi}), which is the best estimate of the posi-
tion, given the expression levels. Expanding around this estimate,
the distribution is approximately Gaussian,

P(x{gi}) = 191

1 (c—x({g})’
P(x|{gi}) ~ exp |— , 10
(e~ p[ 202 [10]
where the error in our position estimate is defined by
1 Kldgik) .y, d&k)
ey e i
i e=x.({g})

All the terms in Eq. 11 are experimentally accessible.

Eq. 11 tells us the precision with which expression levels en-
code position: Observing the expression levels {g;} allows us (or
the cell) to specify position, at best, with an “error bar” o, ; this
error could be different at different points in the embryo, so we
really should write o, (x). Checking our intuition, we see that this
error bar is smaller when the variability in expression is smaller
(smaller C), when the mean slopes of the expression levels are
larger (larger dg;/dx), or when we can sum over more genes.
We can define a similar quantity based on measurements of
a single gene,

1

Oi (x )

1 |dg(x)

o) | dr

; [12]

and this construction is shown schematically in Fig. 4 4 and B in
the case of Hb. Note that when o, is small, we can justify our
approximation that P(x|{gi}) is sharply peaked, but when oy
becomes large, it is more rigorous simply to say that we do not
have much information about x rather than trying to give a more
quantitative interpretation.

Analyzing the spatial profiles and variability of gene expres-
sion as suggested by Eq. 11, we obtain the estimates of o, shown
in Fig. 4C. Remarkably, the reliability of position estimates based
on the four gap genes is o, /L ~ 1% (compare with dashed line),
almost precisely equal to the observed reproducibility with which
pattern elements are positioned along the anterior/posterior axis.
This is strong evidence that the gap genes, taken together, carry
the information needed to specify the full pattern. Further, this
positional accuracy is almost constant along the length of the
embryo, which again is consistent with what we see in Fig. 2. This
constancy emerges in a nontrivial way from the expression pro-
files, the noise levels, and the correlation structure of the noise.
If we try to make estimates based on one gene, we can reach
~1% accuracy only in a very limited region of the embryo, but
the detailed structure of the spatial profiles ensures that these
signals can be combined to give nearly constant accuracy.

If the errors in estimating position really are Gaussian, as
in Eq. 10, then we can substitute into Eq. 4 to show that
I=(log,[0.8L/(cyV2re)]), where L is the length of the embryo,
and (---) denotes an average over position. Computing this av-
erage, we have I =4.14 +0.05 bits. Alternatively, we can use the
distribution of expression levels at each position, Eq. 8, to
compute the information directly as in Eq. 6, and we find

Dubuis et al.
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Fig. 4. Positional error as a function of position. (A) Geometrical inter-
pretation of the positional error for a single gene (Hb) at a given position.
From Eq. 12, ox(x) is proportional to the reproducibility of the profiles and is
inversely proportional to the derivative of the mean profile. (B) Positional
error based on the expression of Hb alone (red; mean + SEM from boot-
strapping) compared with the mean profile (gray). (C) Positional error based
on combinations of gap genes, from Eg. 11. Note that once we combine
information from all the gap genes, the net positional error is nearly con-
stant and equal to 1% along the entire anterior/posterior axis.

I=4.1+0.23 bits. The agreement between these estimates sup-
ports our approximations and gives us confidence that the mea-
surement of o, in Fig. 4 really does characterize the encoding of
positional information by the gap genes.

Thus, the gap genes carry enough information for each nu-
cleus to know its position with an error bar ~ 1% of the embryo’s
length, and this is equal to the variability in localization of fea-
tures that emerge in later stages of development. On the other
hand, as noted above, this is not quite enough to specify the
position of every nucleus uniquely. Is it possible that more in-
formation is “hiding” in the expression profiles? In particular, if
the noise in neighboring cells is correlated, the errors in speci-
fying relative positions (e.g., that one cell is more posterior than
another) could be much smaller than the errors in specifying
absolute positions. As a first step, we can ask how much in-
formation the expression levels of the gap genes provide about
position measured from a “center of mass” that we compute
from the whole spatial profile, rather than position in the fixed
coordinate system that starts with x =0 at the anterior end of the
embryo. This relative positional information is 0.7 bits larger
than the absolute positional information; although the data
are very preliminary, we see hints of a similar gain of informa-
tion about relative position for the peaks of Eve expression in
Fig. 2. These results indicate that, through spatial comparisons,
there may be enough information available to specify each
cell’s identity.

More Than One Bit per Gene?

The positional information carried by single gap genes is more
nearly two bits than one, as described above, suggesting that
spatial variations in gene expression define much more than on/
off expression domains. However, when we combine information
from different genes, redundancy among the spatial profiles of
the different genes limits the information gain, with the result
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that the total information from four genes still is more than four
bits, but not that much more. Perhaps almost all this information
could be captured by a network that recognizes only on and off
states of each gene, without resolving intermediate expression
levels. How can we tell if the continuous gradations of expression
are truly significant?

Suppose that the mechanisms that respond to the gap genes
are limited to distinguishing only on and off states. The defi-
nition of “on” (“off”) is that the expression level is above (be-
low) some threshold, which could be different for each gene,
and to be fair we should imagine that these thresholds can be
adjusted to capture as much positional information as possible.
Instead of the state of each cell being defined by a set of con-
tinuous expression levels {g1,82,83,84}, the state would be given
by a four-bit binary word, as in Fig. 5. At best, these words could
convey four bits of positional information, but the actual in-
formation will be less because, given the spatial profiles, there is
no set of on/off thresholds that will use all the 16 possible words
equally often; there is an extra loss of information because of
noise and variability across embryos. The result is that the
maximum information that can be conveyed in such a binary
scheme is 2.92 +0.03 bits. Further, this information is distrib-
uted very inhomogeneously along the length of the anterior/
posterior axis so that some binary words point to regions of the
embryo that are defined within ~1% of the total length,
whereas others (e.g., 0011, 1100, 0001) define domains as large
as ~10% of L. Thus, mechanisms that ignore intermediate ex-
pression levels would lose a substantial fraction of the available
positional information, as has been suggested from very dif-
ferent arguments (38).

Signature of Optimization?

The discussion thus far concerns the amount of information that
actually is transmitted by the levels of gap gene expression.
However, we know that the capacity to transmit information is
strictly limited by the available numbers of molecules, and that
significant increases in information capacity would require vastly
more than proportional increases in these numbers (11). Given
these limitations, however, cells can still make more or less ef-
ficient use of the available capacity. To maximize efficiency, the
input/output relations and noise characteristics of the regulatory
network must be matched to the distribution of input tran-
scription factor concentrations (15). This matching principle has
a long history in the analysis of neural coding (39-41), and it has
been suggested that the regulation of Hb by Bicoid might provide
an example of this principle (15). Here, we consider the gener-
alization of this argument to the gap gene network as a whole.
If we imagine that there is a single primary morphogen, then the
expression levels of the different gap genes, taken together, can be
thought of as encoding the concentration ¢ of this morphogen.

o—+00o
—~a00

By analogy with Eq. 11, these expression levels can be decoded
with some accuracy o< (c), which itself depends on the mean local
concentration. The key result of ref. 15 is that when noise levels
are small, all the symbols in the code should be used in proportion
to their reliability, or in inverse proportion to their variability.
Thus, if we point to a cell at random, we should see that the
concentration of the primary morphogen is drawn from a distri-
bution

1 1

PC(C) VA o_,gff(c) ’ [13]
where the constant Z is chosen to normalize the distribution.
However, the input is a morphogen, so its variation is connected
with the physical position x of cells along the embryo: We should
have ¢ =c(x). Then, if the cells are distributed uniformly along
the length of the embryo, the probability that we find a cell at x is
just Py(x)=1/L, and hence

P.(c)dc =Py(x)dx =% (14]
-1
“P(e)=1 d;(;‘) [15]

We have two expressions for the distribution of input tran-
scription factor concentrations: Eq. 15, which expresses the role
of the input as morphogen, encoding position x, and Eq. 13,
which expresses the solution to the problem of optimizing in-
formation transmission through the network that responds to the
input. Putting these expressions together, we have

zZ 1
L of(c)

1
ol [16]

dc(x)
dx

where, in the last step, we recognize the equivalent positional
noise oy(x) by analogy with Eqs. 11 and 12. Thus, optimizing
information transmission predicts that the positional uncertainty
ox(x) will be constant along the length of the embryo, as observed
in Fig. 4C. Details are provided in Materials and Methods.

To measure the closeness of the embryo’s approach to opti-
mality, we can compare the observed positional information with
the maximum /.5, which could be obtained if the embryo could
adjust the distribution of nuclear positions Py (x) to match the
positional error oy(x) perfectly. In other words, if we take the
measured positional errors as given, what is the capacity Imax of
the gap gene system to carry positional information, and what

Fig. 5. Binary view of the gap gene system. For
each gap gene i, we quantize the expression level so
that the gene is on (1) if g; is greater than a thresh-
old ¢; and off (0) otherwise. Here, we show the
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resulting domains of gene expression (dark color
bars), as well as the fluctuations of their borders
(in gray) for a set of thresholds that maximizes the
total information carried by the binary variables
- (GKni =0.125, HK,:O.OS, Ot =0.1, HHb =02) For ref-
erence, the mean profiles are plotted in dim colors
in the background. (Left) Information carried by the
quantized profiles of the individual genes is shown.
The joint pattern of gap gene activity at each posi-
tion is represented by a four-digit binary code
(shown above, with the bits representing Kni, Kr, Gt,
and Hb from top to bottom), and the total in-
formation encoded jointly by the on/off variables is
computed as explained in the main text.
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fraction of this capacity is achieved by the embryo? The result,
from ref. 15, is that

L
1 dx
Imax_logZ /‘—277,'6 0/ ax(x) . [17]

The observed information transmission is /I . =0.984 +0.003,
within a few percent of the optimum.

Discussion

The final result of embryonic development appears precise and re-
producible. Less is known about the degree of this precision, and
about the time at which precision first becomes apparent. Our cen-
tral result is that in the early Drosophila embryo, the patterns of gap
gene expression provide enough information to specify the posi-
tions of individual cells with a precision of ~ 1% along the anterior/
posterior axis. This is the same precision with which subsequent
pattern elements are specified, from the pair rule expression stripes
through the cephalic furrow, so that all the required information is
available from a local, instantaneous readout of the gap genes.

The precise value of the information that we observe is also in-
teresting. It corresponds to being able to locate any nucleus with
an error bar that is smaller than the distance to its neighbor, but
the total number of bits is not quite large enough to specify the
position of every cell uniquely. The difference is that when we make
an estimate with error bars, the estimate comes from a distribution
with tails, and the (small) overlap of the tails of these distributions
means that one cannot quite identify every cell. It is possible that
cells, in fact, do not quite have unique identities or that these
identities emerge only later in development. Alternatively, although
the gap genes encode position with an error bar, the difference
between positions coded by expression levels in neighboring cells
could have a much smaller error bar, and we have preliminary ev-
idence for this idea. Although further experiments are required to
settle this issue, we find it remarkable that the gap gene expression
levels carry so much information, such that an enormously precise
pattern is available very early in development.

The fact that precision is available early does not mean that
there is no enhancement of precision by subsequent processes. In
particular, because the joint distribution of expression levels does
not fill the full space of possibilities, it would be possible for the
embryo to recognize a large error, and perhaps to correct it, with
no additional inputs. The question of whether the embryo ach-
ieves such an error-correcting code (21) for positional in-
formation is completely open.

The information that gene expression levels can carry about
position is limited by noise. In particular, both because the concen-
trations of transcription factors are low and because the absolute
copy numbers of the output proteins are small, there are physical
sources of noise that cannot be reduced without the embryo
investing more resources in making these molecules. Given these
limits, it still is possible to transmit more information through the
gap gene network by “matching” the distribution of input signals to
the noise characteristics of the network. Although this matching
condition is generally complicated, in the limit that the noise is
small, it can be expressed very simply: The density of cells along
the anterior/posterior axis should be inversely proportional to the
precision with which we can infer position by decoding the signals
carried in the gap gene expression levels. Because cells are almost
uniformly distributed at this stage of development, this predicts
that an optimal network would have a uniform precision, and this is
what we find. This uniformity emerges despite the complex spatial
dependence of all the ingredients, and thus seems likely to be a
signature of selection for optimal information transmission.

Materials and Methods

Experiments. To allow simultaneous imaging of proteins encoded by all four
gap genes, polyclonal antibodies were generated (Panigen, Inc., Blanchardville,

Dubuis et al.

WI) in mice, rats, and guinea pigs against His-Trx-tagged full length Hb, Kni,
and Gt fusion proteins (42); procedures were under the approval of Princeton
University’s Institutional Animal Care and Use Committee, Protocol No.
1798A to E.F.W. To image Kr protein, we use a rabbit anti-Kr antibody
generated by Chris Rushlow (New York University). Fixation and staining
were done as described by Dubuis et al. (28); details of the imaging, profile
extraction, and staging (embryo age determination during nuclear cycle 14)
are described by Dubuis et al. (28). We draw attention to the discussion of
experimental errors in the study of Dubuis et al. (28), because this issue is
especially important for our analysis.

Analysis. Measurements on the expression profiles of a single gene in multiple
embryos provide many samples of the joint distribution P(g,x). To compute
the mutual information between g and x, we discretize the two continuous
axes into a number of bins; along the g axis, we use these bins adaptively so
that the histogram of g in these bins is nearly flat. We then take the (nor-
malized) counts in each bin as an estimate of the probability, compute the
information, and examine the dependence on the number of bins and the
number of samples. Following refs. 43 and 44, we search for the expected
systematic dependencies and extrapolate to the limit where the number
of bins and samples both become large. We can obtain an upper bound on
the information by assuming that the conditional distribution P(g|x) is
Gaussian, and we can obtain an approximation to the information by taking
this Gaussian approximation through to the construction of Py(g); all these
estimates agree within error bars. With simultaneous measurements of ex-
pression levels for multiple genes, we can estimate the information that they
carry jointly. The difficulty is that the space of expression levels is now much
larger but our number of samples is not. Having calibrated the Gaussian
approximation against more direct calculations for single genes (above), we
can use this approximation in the case of multiple genes, using Eq. 8 directly
in the multidimensional generalization of Eq. 5; we use a Monte Carlo
method to evaluate these integrals numerically and estimate errors by
a bootstrap method. Means and covariance matrices are calculated from our
multiple samples of joint expression levels in the usual way. Importantly, if
the signals that we observe are invertible linear combinations of the true
signals, as might happen, for example, because of a small amount of cross-
talk among the different imaging channels, then the invariance of the in-
formation to coordinate transformations tells us that this will not change
our estimate. The other path to the analysis of multiple genes is through the
computation of oy, as described in the discussion leading to Eg. 11. Here,
too, we have to be careful about the dependence of our estimates on the
number of samples that we include in our analysis, and quoted results are
extrapolated as by Strong et al. (43) and Slonim et al. (44). In the discussion
leading to Fig. 5, we set thresholds to quantize the expression levels and
then estimate the mutual information between the four-bit words and the
position x; the results we show are for the settings of the four thresholds
that maximize the information.

Derivation of Optimality Condition. To derive Eq. 13, consider the case where
information flows from a single input transcription factor (e.g., Bicoid) to
a set of K output genes (the gap genes). The concentration of the input is c,
and the output genes have expression levels g1, g2, ***, gk (16-18). Different
cells in the embryo experience different values of ¢, depending on their
position, and if we choose a cell at random, it sees a concentration drawn
from the distribution P.(c). The network responds to this input, generating
expression levels that are drawn from the distribution P({g;}|c) ; it will also
be useful to define the (joint) distribution of output expression levels,

Po({a) = [ de PeleP((gi}Ic)- 18]
The information that flows from input to output can be written, asin Eq. 4, as
({g):0)= - [ deP(clog,ri(c)~ [ d*g Po(lansIP(clig)], 1]

where, from Bayes’ rule, we have

P({gi}|c)P.
Plclig) =SS (} o e,

The transmitted information /({g;}; c) depends both on the characteristics
of the gene network, expressed as P({gi}|c), and on the distribution of input
signals, P.(c). In particular, noise associated with the finite number of
available molecules is encoded by the details of P({gi}|c). Given these con-
straints, it still is possible to maximize information transmission by the
proper choice of the input distribution (20, 21). In general, this optimization

[20]
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is a hard problem, but we can make progress if we assume that the noise is
small, and we will argue that this is a good approximation.

In Eqg. 19, we need to take an average over the full distribution of output
expression levels, Py({gi}). This distribution is broadened by two effects.
First, the inputs c are varying, and the outputs vary in response. Second, even
when the input c is fixed, the outputs {g;} vary because of noise. We assume
that noise is small in the sense that the first effect is much larger than the
second, so that we can average over outputs by assuming that the output
is always equal to its average value, g;i=gj(c), and then average over the
input c. In this approximation,

I=— /dc Pc(c)log,Pc(c) - /dc Pe(c)S9 ({9i=Gi(0)}), [21]
where Signd({gi}) =5[P(c|{gi})]- To find the distribution of inputs that max-

imizes the information, we introduce, as usual, a Lagrange multiplier to fix
the normalization of P.(c) and solve

%(c) [I—A/dc Pf(c)] =o0. [22]

The result is

()= yexp|~(In2)si5, (1gi=5,(0)})]. 23]
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where is Z chosen to normalize the distribution. If the noise is also approxi-
mately Gaussian—given knowledge of the gene expression levels {g;}, we
know the input concentration to within some error bar 6 (c), which itself

depends on the actual value of the input—then Sif))nd =log,[v2restf(c)] and

1 1
Pc(c) =2'W7 [24]

corresponding to Eq. 13. The system can optimize information transmission
by using the symbols ¢ in proportion to their reliability (15).

The noise in the system can be summarized by o, itself, which is smaller
than the distances over which the output of any single gap gene varies
significantly. Thus, in retrospect, the effective noise really is small, as as-
sumed above, which justifies the approximation leading to Eqg. 23. This
derivation can be generalized to cases where there are multiple inde-
pendent morphogen inputs, each varying along x.
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