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Abstract

One of the most widely used strategies for global optimization employs the concept of classical simulated annealing. In the last
decade an alternative approach has been suggested based on quantum simulated annealing. Here, we apply quantum annealing ideas
to finding minimum energy structures of Lennard–Jones clusters. We find that quantum annealing is superior to classical simulated
annealing but is affected by ergodicity breaking difficulties similar to classical simulated annealing. This difficulty is particularly
serious for larger clusters with multiple funnel potential energy surfaces.
! 2005 Elsevier B.V. All rights reserved.

Finding the atomic structure that corresponds to the
global minimum of the potential energy surface (PES) is
a central problem in cluster physics. It is highly non-
trivial as for most global optimization problems: (i)
the PES has many local minima, whose number grows
exponentially with cluster size and (ii) the PES usually
has a multi-funnel structure, reflecting the simultaneous
presence of competing growth sequences. Both features
are present in Lennard–Jones (LJ) clusters, in spite of
the relative simplicity of the inter-atomic interactions
given by the two-body potential

Uij ¼ 4!
r
rij

! "12

" r
rij

! "6
" #

; ð1Þ

where ! and r are reduced LJ units and rij is the Euclid-
ean distance between atoms i and j. The many barriers
that separate local minima in the PES of the cluster
are a result of the repulsive hard core which severely

hampers local atomic rearrangements. At the same time,
at least two main funnels have been identified in the PES
of relatively small (up to few hundred atoms) LJ clus-
ters: they reflect a growth sequence which, in this size
range, is dominated by competing icosahedral and deca-
hedral or cubic close-packed (ccp) structural motifs
[1,2].

Different optimization methods have been tested and
applied to LJ clusters. These optimization methods can
be divided into two classes based on the criteria that: (1)
they use the PES as the only guiding function (objective
function) or (2) use additional information such as
knowledge about the dominant growth sequences.
Among the methods belonging to the first class classical
simulated annealing (SA) or its variants [3] are widely
used. SA relies on thermal fluctuations to overcome
barriers and achieve global sampling of the PES. More
recently, however, it has been recognized that quantum
fluctuations can be superior in some cases to classical
thermal fluctuations in order to achieve global optimiza-
tion. The corresponding approaches have been called
quantum annealing (QA) methods [4–8].

0009-2614/$ - see front matter ! 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cplett.2005.06.075

* Corresponding author.
E-mail addresses: gregor@princeton.edu (T. Gregor), rcar@

princeton.edu (R. Car).

www.elsevier.com/locate/cplett

Chemical Physics Letters 412 (2005) 125–130

mailto:rcar@princeton.edu
mailto:gregor@princeton.edu
mailto:rcar@princeton.edu


Interestingly, what is perhaps the very first proposal
for QA was made in the context of LJ clusters [9]. This
pioneering work was limited to very small clusters (up to
19 atoms) and no comparison was made with alternative
strategies based on classical SA. In this work, we pro-
vide a quantitative comparison of QA and SA methods
for LJ clusters. In particular, we assess how alternative
methods perform vs. system size and how they handle
multi-funnel PESs. In agreement with similar findings
for random ferromagnets [4], random Ising models
[5,7], the traveling salesman problem [8] and simple pro-
tein models [6], we find QA to be superior to SA in the
LJ cluster problem. However, both QA and SA proto-
cols become unable to find the global minimum at a rea-
sonable cost when the size of the system becomes too
large, irrespective of the single- or multi-funnel nature
of the PES. This is fully consistent with theories of
annealing methods according to which exponentially
large annealing times would be required to find the
global minimum of a rugged PES of a large many-body
system, regardless of its complexity. As an additional
result of our analysis we propose a new optimization
scheme that we call the Replica Pinned Quantum
Annealing (RPQA) method which, for LJ clusters, is
superior, albeit only quantitatively, to all the other
schemes investigated in the present work. Using RPQA
we were able to find the global minima1 of icosahedral
clusters with up to 201 atoms, which is well beyond
the capability of common SA and QA approaches.

In SA one generates atomic configurations distrib-
uted as exp("

P
ijUij/T) using Monte Carlo (MC) or

Molecular Dynamics. The temperature T is a parameter
to control the size of thermal fluctuations. Starting at
high T, where the system explores liquid-like equilibrium
configurations, the temperature is slowly reduced until
the system gets trapped into a local minimum of low en-
ergy. QA is conceptually very similar. In the LJ case, one
constructs a quantum Hamiltonian H by adding to the
PES a kinetic energy K̂ given by:

K̂ ¼
X
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where r2
i is the Laplacian operator acting on the ith

atom. The quantum coupling c ¼ !h2=2m is used as a
parameter to control the size of quantum fluctuations.
Simulations are performed at zero or at small finite T
using a quantum MC approach. At large values of c
quantum fluctuations delocalize the system over a large
portion of configuration space. Subsequently, c is slowly
reduced until the system gets trapped into a local mini-
mum configuration. We use standard Metropolis MC to
perform classical SA and a path integral Monte Carlo

(PIMC) approach to perform QA. In PIMC, one ex-
ploits the isomorphism between a quantum system at
finite T and a classical ring polymer consisting of P rep-
licae of the original system at the same temperature [11–
14]. Each replica has a reduced potential energy U/P and
nearest neighboring replicae are coupled harmonically
with a force constant PT2/4c, resulting from a discret-
ized Feynman path integral. A larger value of P is
required for a system with a large quantum character,
i.e., a system with large c and/or small T. In our PIMC
implementation, we follow the bisection procedure of
[15] to sample polymer configurations but alternative
procedures based on staging can be used as well [16].
We take a value of T = 1/! in reduced LJ units. This
value of T is sufficient to discriminate between the low-
est-lying local minima of the PES in the entire size range
considered in the present investigation. Furthermore, it
allows us to use a value of P = 100 in most of our sim-
ulations where !h is varied between 0 and 12 atomic units
(a.u.). Because different replicae are coupled only when
they are nearest neighbors, the computational cost of
a PIMC simulation is linear in P, thus a PIMC simu-
lation is roughly P times more expensive than a classi-
cal MC simulation that explores the same number of
configurations. In the following we take this into
account when comparing classical and quantum
annealing protocols. In all simulations, the starting
configurations were taken from well-equilibrated con-
figurations generated by classical MC at T = !. P equal
replicae were constructed from one of these configura-
tions in the QA case.

Initially, we adopted a simple annealing schedule in
which the control parameter (either T or c) was reduced
linearly with simulation time. While this procedure
works well for small clusters, when the number of atoms
is greater than 20 it becomes increasingly more difficult
to avoid trapping in a local minimum. We rationalize
these findings as follows: at sufficiently large T(c), the
system ergodically samples the PES, but when T(c) be-
comes smaller than some threshold, ergodicity breaks,
evolution becomes sluggish, and eventually the system
becomes trapped in a local minimum. This is precisely
what one expects for classical SA when many barriers
must be crossed in order to reach the global minimum.
A similar phenomenolgy appears in QA. In this case,
it is a manifestation of the inability of the system to adi-
abatically follow the ground-state [7]. It turns out that a
significantly more efficient strategy rests in letting the
system evolve above the threshold for ergodicity break-
ing while at the same time systematically performing
local optimizations from the configurations visited dur-
ing ergodic evolution. We find that a good choice for
ergodic evolution corresponds to T = 0.18! 2 in the SA

1 It can never be proved that one has found the global minimum for
a particular cluster. Here, we qualify as !global minima" minima that
correspond to the Cambridge Cluster Database [10].

2 Recall that the melting temperature for small clusters is around
T = 0.2e.
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case and to !h ¼ 12 in the QA case. In both cases we map
local minimum configurations from local optimizations
by a conjugate gradient algorithm every 100 MC
(PIMC) steps. A step corresponds to a single MC update
of the coordinates of all the particles in a cluster in the
classical case and of all the replicae in the quantum case.
This sampling strategy is compared to SA and QA with
a linear annealing schedule for the special case of a 38
atom cluster in Table 1. In the sampling cases, the addi-
tional cost of performing the conjugate gradient optimi-
zations has been taken into account in assigning a cost.
The sampling approach is more efficient than standard
annealing procedures. Similar results also apply to other
cluster sizes and we adopt the sampling strategy in all
subsequent simulations.

The performance of SA and QA (with the sampling
strategy) is evaluated in Table 2 for selected cluster sizes.
QA works significantly better than SA, particularly for
large cluster sizes, where the savings can be beyond an
order of magnitude. The advantage, however, is merely
quantitative because for clusters larger than about 100
atoms, neither SA nor QA is able to find the global min-
imum. While the 38 and 75 atom clusters have ccp and
decahedral global minima, respectively, all other clusters
in the table have icosahedral global minima. Both LJ38
and LJ75 are examples of clusters, where the low energy
PES is dominated by two funnels. Since icosahedral
structures are significantly more numerous and easily
accessible when T or c are above the ergodicity thresh-
old, these clusters are considerably more difficult to opti-
mize, as recognized in [17]. The lowest icosahedral
minimum which lies only slightly above the global ccp
and decahedral minimum, respectively, is found most
of the time. This difficulty with a multi-funnel PES is
evident in Table 2, from which one sees that both SA
and QA are able to find the global minimum of LJ38
but not of LJ75. However, even for !easier" icosahedral
clusters, both methods are unable to find the global min-
ima of clusters of more than 100 atoms. We assign this
difficulty to the exponential growth of the number of
local minima and of the barriers connecting adjacent

minima with cluster size. This inevitably leads to
ergodicity breaking in SA and QA optimization algo-
rithms for a sufficiently large cluster size. The effect of
a multiple funnel PES is that it leads to ergodicity break-
ing at smaller cluster sizes.

One key aspect of annealing methods that is being
lost when using the sampling strategy is the iterative
improvement. At high T(c), the system samples larger
regions of configuration space that are successively re-
stricted to smaller regions comprising lower lying min-
ima as T(c) is lowered. In other words, the system
improves the knowledge of the PES during its annealing
history. Unfortunately, we have seen that this strategy
ceases to be effective when the annealing time is finite
and the number of local minima is very large. A simple
way of incorporating learning from sampling history is
achieved by employing RPQA. In this approach the sys-
tem samples configuration space at !h ¼ 10 a:u: while
successive local optimizations are performed, as in the
sampling method described above. However, this time
one of the P replicae is held fixed at the coordinates of
the best local minimum found during the previous
annealing history. As the sampling proceeds, a better lo-
cal minimum is eventually found. Then the coordinates
of the replica that happened to be in the catchment area
of this minimum are pinned at their corresponding local
minimum value while the replica that was held fixed at a
higher-lying local minimum is released. By repeating this
procedure many times, one of the replicae will find the
global minimum. We see in Table 2 that this procedure
represents a significant improvement over the pure sam-
pling procedure. By using the RPQA method the global
minimum of a LJ147 cluster can be found in 1 day using
a standard laptop, a result that is well beyond the capa-
bility of the SA and QA sampling methods. Further
improvements may be possible by using more elaborate
pinning strategies (perhaps involving more than one rep-
lica at a time). Features of RPQA are reminiscent of the
simulated tempering method which represents a signifi-
cant improvement over simple classical simulated
annealing strategies [18].

To explain why QA methods perform better than
their classical counterpart, we analyze the so-called
!inherent PES" sampled by classical and quantum
schemes. The concept of inherent PES was introduced
in classical liquids to eliminate thermal effects from
the PES [19]. It consists of a collection of the local
PES minima that underlie liquid-like configurations.
In Fig. 1, we reported the distribution of low-lying lo-
cal minima found by classical and quantum sampling
methods for LJ147. As we can see, the quantum inher-
ent PES has more weight on low energy states, exhib-
iting a tail extending to lower energy configurations.
This is at first surprising because the corresponding
configurations before local optimization have systemat-
ically higher energies in the quantum case. However,

Table 1
Comparison of computational cost for different global optimization
algorithms for LJ38

Method Cost (steps)

Classical annealing >100000
Quantum annealing >100000
Classical sampling 22732
Quantum sampling 3500

The numbers represent the average for 25 different initial conditions.
!Annealing" refers to a slow decrease in T(c), whereas in the !sampling"
protocol T(c) is kept constant and local minima are mapped from local
optimizations by a conjugate gradient algorithm every 100 MC
(PIMC) steps. Both classical and quantum annealing were unable to
find the global minimum (> signifies that we stopped the simulation
after that amount of steps).
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the main reason for this higher energy is that quantum
configurations include classically forbidden configura-
tions of repulsive potential energy. These are associated
to barrier crossings which are made easier by quantum
fluctuations. For this reason, quantum sampling has at
the same time a consistently higher weight than classi-
cal sampling on low-lying minima that are separated by
high and narrow barriers from adjacent regions of con-
figuration space. We found that these barriers are usu-
ally associated with small local readjustments leading
to elimination of defects. These local processes become

increasingly more difficult at large cluster size when
many routes to disorder are present and eventually
the system is trapped in a glassy configuration. RPQA
obviates this difficulty to some extent. In all cases, we
find that at sufficiently low energy, the replicae that
are pinned successively are just two adjacent replicae,
each one of which in turn helps the other to find a bet-
ter minimum. This cooperative effect between adjacent
replicae allows effective defect annealing and corre-
sponding downhill motion until the global minimum
is found.

Table 2
Comparison of the computational cost of classical, quantum and RPQA search methods for different cluster sizes

Size Classical sampling Quantum sampling RPQA

LJ26 359 168 144
LJ38 22732 3500 3100
LJ55 14387 1800 1400
LJ70 >500000 88900 30800
LJ75

a >1000000 37900 34200
LJ107 >1000000 >1000000 251100
LJ147 >1000000 >1000000 229200
LJ167 >1000000 >1000000 618000
LJ201 >1000000 >1000000 899200
a Values are for lowest icosahedral minimum.

Fig. 1. Energy distribution of 100 replica for a LJ147 cluster for classical (black) and quantum (red) sampling. Notice the inverted energy scales (more
stable structures are on the right). Upper panel: Energy distribution before (left peak) and after (right peak) local minimization. Lower panel:
Inherent PES (larger view of right most peaks from upper panel). Inset: Enlargement of lowest energy configurations. The global minimum would be
at "876!. (For interpretation of the references to colour in this figure legend, the reader is referred to the online version of this article.)
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Finding the global minimum is considerably more
difficult when the system has to move from the icosahe-
dral to the ccp funnel at low energy. As we can see from
Table 2 none of the methods considered here succeeded
in achieving this result within a reasonable time for LJ75,
while all the methods worked successfully for LJ38. The
reduced success rate for LJ75, as compared to LJ38, is
partially due to the large increase in the number of local
minima with cluster size. However, a less trivial reason is
associated to the presence of two funnels in the PES. To
better investigate this issue, we performed quantum
sampling runs with P = 500 and !h ¼ 10, where one of
the replicae was pinned at the configuration of either
the global decahedral or the lowest icosahedral mini-
mum. We found that when a replica is pinned at the glo-
bal minimum, it is easy for another replica to find the
lowest icosahedral minimum. An example of this behav-
ior is shown for LJ75 in Fig. 2, which corresponds to a
likely path as the system moves from A (the decahedral
minimum) to B (the lowest icosahedral minimum).
While for a LJ38 cluster both paths (AB and BA) are
sampled – although the rate of occurence of AB is higher
than that of BA by a factor of 5 – the path BA is no
longer sampled for a LJ75 cluster. This provides a clear
example of ergodicity breaking due to the presence of
two competing funnels in the PES. It appears that the
difficulty in going from B to A is not so much associated
to the energy barriers that must be crossed but to the
fact that while many paths lead to B, paths leading from
B to A are rare. In other words, nucleation of icosahe-
dral order is much easier than nucleation of ccp order.
There is no easy way to avoid this difficulty with optimi-
zation schemes that use the PES as the only objective

function. Indeed, all the schemes that we examined in
this study, including our most efficient quantum sam-
pling method, failed to find the global decahedral mini-
mum of LJ75 when starting from configurations that
were in the catchment basin of the icosahedral mini-
mum. Similar difficulties were encountered using alter-
native methods solely based on the PES [20].

A possible remedy is to bias the system with addi-
tional information other than that provided by the
PES alone. For instance, one could add a penalty func-
tion that favors ccp order over icosahedral order. This
could be expressed in terms of icosahedral and ccp order
parameters. Alternatively, the same effect could be intro-
duced by biasing the preselection of the MC moves. This
is sometimes done in optimization schemes based on ge-
netic algorithms [21]. By specifically constructing cluster
structures that correspond to icosahedral and decahe-
dral growth sequences, these schemes have been able
to find good candidate global minimum structures for
LJ clusters of up to 309 atoms [22]. Successful genetic
algorithms for LJ clusters have also been reported by
[23,24]. Another highly successful approach is the
basin-hopping method in which SA is performed on
the inherent PES rather than on the PES itself as we
do here [17,25]. With this scheme all the minima for
LJ clusters up to 110 atoms have been found [17]. Novel
optimization strategies with a good success rate for large
LJ clusters have been reported by [26,27].

In conclusion, the exponential growth of the number
of local minima with cluster size appears to be an insur-
mountable difficulty for any optimization algorithm
based solely on the knowledge of the PES. However,
some algorithms may work on a more extended size
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Fig. 2. Imaginary time path between global decahedral (A) and lowest icosahedral (B) minimum for LJ75. This plot represents a snapshot of a run
with P = 500, where the replica in the global minimum was held fixed.
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range than others. We have shown here that quantum
sampling methods are superior in this respect to their
classical counterparts. In particular, we introduced a
new approach, the RPQA method, which has been able
to find the global minima for various clusters consisting
of as many as 201 atoms. This approach may be useful
in practical calculations on a variety of molecular sys-
tems as well as in more general optimization problems
where the objective function depends on many variables
and is characterized by the presence of many local
minima.
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