Optimal decoding of cellular identities in a genetic network
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In developing organisms, spatially prescribed cell identities are thought to be determined by the
expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical
framework capable of exposing the rules and precision of cell specification over developmental time.
Using the gap gene network in the early fly embryo as an example, we use such a framework to show
how expression levels of the four gap genes can be jointly decoded into an optimal specification of
position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynam-
ics of pair-rule expression patterns at different developmental time points and in various mutant
backgrounds. Precise cellular identities are thus available at the earliest stages of development, con-
trasting the prevailing view of positional information being slowly refined across successive layers
of the patterning network. Our results suggest that developmental enhancers closely approximate a

mathematically optimal decoding strategy.

Introduction

Biological networks transform input signals into out-
puts that capture information of functional importance
to the organism. One path to understanding these trans-
formations is to “read out,” or decode this relevant infor-
mation directly from the network activity [1, 2]. In neural
networks, for example, features of the organism’s sensory
inputs and motor outputs have been decoded from ob-
served action potential sequences, sometimes with very
high accuracy [3-5]. Decoding provides an explicit test
of hypotheses about how biologically meaningful infor-
mation is represented in the network.

The gap genes involved in patterning the early em-
bryo of the fruit fly Drosophila melanogaster provide an
alternative example of the decoding problem [6-8]. In-
dividually, the gap genes form a network with strong,
bidirectional couplings among themselves. But, taken to-
gether, the gap genes form a single layer in an otherwise
feed-forward flow of information, where they take inputs
from the primary maternal morphogens and drive the ex-
pression of pair-rule genes [9, 10] (Figure 1a). Pair-rule
expression occurs in stripes that are precisely and repro-
ducibly positioned within the embryo, forming an outline
for the segmented body plan of the fully developed or-
ganism [11].

The emergence of a precise and reproducible body
plan requires each cell in the developing embryo to take
actions that are appropriate to its position. Previous
work has shown that a snapshot of gap gene expression
levels contains enough information to position each cell
with ~ 1% precision along the embryo’s anterior-posterior
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(AP) axis [12, 13]. This is comparable to the precision
with which pair-rule patterns and other morphological
markers are specified. The fact that this information
is available, however, does not mean that it is used by
the organism. Here we take the pair-rule stripes as a
measure of the embryo’s own readout of positional in-
formation, and test this idea explicitly: we decode the
positional information conveyed by gap gene expression
levels, and use this decoder to predict the dynamics of
pair-rule stripes in wild-type and their distortions in mu-
tant embryos (Figure 1).

We can imagine many different ways of decoding gene
expression levels to estimate position, but there is a
unique optimal decoding scheme. More specifically, if
the embryo makes use of all the available information
then the statistical structure of gap gene expression pat-
terns determines the form of the decoding algorithm (Fig-
ure 1b), without the need for an explicit model or for
any additional parameters; decoded positions then pre-
dict the occurrence of pair-rule stripes (Figure 1c). To
construct the optimal decoder, we measured all gap gene
expression levels simultaneously and with sufficient accu-
racy to characterize the noise in the system. This allows
us to give a good description of the joint distribution
of gap gene expression levels at each position along the
anterior-posterior axis, and these distributions in turn
determine the form of the optimal decoder.

To test the optimal decoder, we made measurements
on mutant embryos, using seven distinct genetic variants
that alter primary maternal inputs. Analysis of these
data demonstrates that a single optimal decoder con-
structed from wild-type data accounts, quantitatively, for
the altered locations of pair-rule stripes in mutant em-
bryos, for the dynamical shifts of the pair-rule stripes in
wild-type embryos, and even predicts when the occur-
rence of these stripes should be variable. This success
of optimal decoding fits into a broader picture of early
embryonic patterning in Drosophila as a system in which
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FIG. 1: Decoding in a genetic network. a. In the early Drosophila embryo, maternally provided morphogens (bed, nos,
tor) regulate the expression of gap genes (kni, kr, gt, hb), whose expression is visualized here in a mid-sagittal slice through an
embryo during nuclear cycle 14 (scale bars, 100 pm). Enhancers (schematically depicted as circles) respond to combinations
of gap protein concentrations to drive pair-rule gene expression that occurs in a precise and reproducible striped pattern. b.
Schematic depiction of the decoding problem. Positional information is supplied by three morphogens primarily acting in
the anterior (A), posterior (P), or terminal (T) domains. The network can be viewed as an input/output device that encodes
physical location x in the embryo using concentrations {g1, g2, g3, ga} of the gap gene proteins. Optimal decoding is a well-posed
mathematical problem, whose solution is found in the posterior distribution P(z*|{g:}) [Eq (3)]; results can be visualized as
a decoding map, P(z"|z) [Eq (4)], see Figure 2. The posterior distribution is constructed from measurements (average gap
gene expressions, {g;(z)} and their covariability, Cjj(z)), and contains no arbitrary parameters. c. Testable predictions from
optimal decoding. Pair-rule stripes are expected wherever decoding a combination of concentrations yields an implied position,

X*, associated with a pair-rule stripe, Xg,, in wild-type.

1) noise levels are as low as possible given the limited
number of molecules involved [14], 2) the reproducibil-
ity of developmental patterning can be traced back to
reproducible maternal inputs [15], and 3) network inter-
actions are selected to extract the maximum amount of
information from these inputs [16-19]. Stated in more
mechanistic terms, our results suggest that the complex
regulatory logic of the pair-rule gene enhancers [20, 21]
implements nearly optimal decoding of the gap gene net-
work activity, and thus provides access to precise and
potentially unique cellular identities already at the earli-
est stages of development. Finally, our decoding maps of
implied position as a function of actual position provide
a quantitative, probabilistic version of the classical idea
that one can plot cell fate vs position—a fate map—even
for mutant embyos [22].

Results
Dictionaries, maps, and optimality

There is a clear advantage to organisms that can con-
struct a rich and precise body plan, specifying the de-
tailed pattern of structures at different positions. It is
less clear when this positional information needs to be
available, or whether evolutionary pressures have been

strong enough to drive mechanisms that extract as much
positional information as possible given the physical con-
straints. Here we test the hypothesis that the fly embryo
achieves an optimal decoding of position given access to
the gap gene expression levels in each individual nucleus,
at a single moment in time. While optimality is a contro-
versial hypothesis [23], we emphasize that, in the present
context, it makes unambiguous, quantitative predictions,
which we test.

Let {g:} = {91, 92, 93, ga} be the expression levels of
the gap genes hunchback (hb), krippel (kr), knirps (kni),
and giant (gt). At each point x along the embryo’s AP
axis, gap gene expression levels take on average values,
gi(z), but also exhibit fluctuations around this mean that
can be summarized with a 4 x4 covariance matrix, Cj;(x).
Exploiting our ability to make precise, quantitative mea-
surements of the expression of all four gap genes simul-
taneously across many embryos [25], we constructed the
mean gap gene profiles and the covariance matrix from
our data (Star Methods and Figure Sla,b). We focus
first on a small window of time, centered 42 minutes into
nuclear cycle (n.c.) 14, because our previous work indi-
cated that gap gene expression levels were highest at that
stage [25].

If the fluctuations are Gaussian, then the mean ex-
pression level and the covariance matrix determine the
joint probability distribution of gap gene expression lev-
els given position. Explicitly, if we look at the simulta-
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FIG. 2: Coding and decoding of position in the fly embryo based on expression of a single gap gene. a. Optical
section through the midsagittal plane of a Drosophila embryo with immunofluorescence labelling for Kriippel (Kr) protein
(scale bar, 100pum). Raw dorsal fluorescence intensity profile of depicted embryo (blue curve, g%(x)) and encoding probability
distribution P(Kr|z) (gray) constructed from 38 wild-type embryos of ages between 40-44 min into n.c. 14. Position z along
the AP axis is normalized by the length L of the embryo; /L = 0 corresponds to the anterior end of the embryo, and /L =1
corresponds to the posterior end. Probability distribution of Kr expression levels (left). b. Decoding probability distribution
P(z|Kr) constructed via Bayes’ rule from the measured probability distributions P(g) and P(g|z) in a, using a uniform prior
Px (z) = 1/L. The posterior, P(z|Kr), is input for the optimal decoder, which maps Kr levels to positions along the AP axis.
For example, the posterior probability distributions of locations x consistent with observing Kr levels 0.05, 0.5, or 1 are the
conditional probability densities P(x|Kr) shown in the three top panels. c. Decoding map Py (z*|x) for a single embryo (here,
a denotes the embryo depicted in a). For three locations, cartoons (top) display uncertainties and ambiguities in determining
location in the embryo based on Kr alone. Importantly, only posteriors for single gap genes (e.g. the distribution P(z|Kr) in
b) can be directly visualized (decoding with two genes, for instance, requires a 3-dimensional visual representation). Decoding
maps P(z*|z) [Eq (4)], however, can be visualized for an arbitrary number of genes. Dynamic ranges (gray bar, right) are the

same for all three probability panels.

neous expression levels of K genes, then we can write
1
(2m)K det[C(z)]

e~ Xk ({g:i},2)/2

P({gi}lx) =

(1)

where Y2 measures the similarity of the gene expression
pattern to the mean pattern {g;(x)} expected at x,

9; ('T)) )
(2)

and C/(x) is the covariance matrix with elements C;(z).
Describing fluctuation by a Gaussian distribution is
an approximation, which we have tested in previous
work [12]. In particular, we can estimate the informa-
tion that individual gap gene expression levels provide
about position assuming only that the underlying prob-
ability distribution is smooth, and this agrees within er-
ror bars with the information calculated in the Gaussian
approximation [12, 13]. We thus view the Gaussian ap-
proximation not as a model of the system, but as a com-
pact summary of its behavior that captures the relevant
information. From this summary, and the hypothesis of
optimality, we will be able to make predictions for the re-
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sults of very different measurements, with no additional
parameters that need to be fit.

To construct the optimal decoder, we apply Bayes’ rule
(for details, see Star Methods, Constructing the decoding
maps):

1

Z({gi})

where the left-hand side, called the posterior, is a distri-
bution over positions x* that are implied by some com-
bination of gap gene expression levels {g;}. We speak of
“implied” positions because the decoder does not have
access to the actual position of a cell; all that it can use
are the four gap gene expression levels, {g;}, which pro-
vide varying amounts of evidence for different possible
positions. Px(x*) is the (prior) probability that a cell
is at position z*, independent of gene expression level,
and is in our case uniform along the AP axis; Z serves
to normalize the distribution, and is independent of x*.
The posterior, P(z*|{g;}), contains all the information
that any mechanism, cellular or computational, could ex-
tract from expression levels {g;}. If the posterior has a
single, reasonably sharp peak at z* = X*({g;}), then
we can translate expression levels back into positions
unambiguously, using a dictionary {¢g;} — X*; this is

P(a"{gi}) = P({g:i}lz")Px(z%),  (3)



known as the maximum a posteriori (MAP) decoder [26].
The width of the distribution P(z*|{gi}) around its peak
quantifies the positional error, i.e., the uncertainty in im-
plied position due to the variability in gap gene expres-
sion levels [13]. But if the posterior has multiple peaks, or
broad plateaus, then genuine ambiguities in decoding ex-
ist and the MAP decoder is misleading. Since we cannot
know in advance whether the decoding will be unambigu-
ous, we keep track of the entire posterior distribution of
implied positions, which we can visualize as a decoding
map (Figure 2).

To construct the decoding map for a single embryo «,
we take the measured expression levels {g®*(x)} in the cell
at actual position x and insert them into Eq (3). This
yields a map of implied positions vs actual positions,

Prap(@”|z) = P(zl{gi}) (4)

{gi}={g7 (=)}

If the considered genes provide enough information to
specify position accurately and unambiguously, then
Paap(@*|x) will be a narrow ridge of density along the
diagonal where the implied position is equal to the ac-
tual position, x* = z. Figure 2 walks through the steps
in the construction of the decoding map Py, (z*|z) in
the case where we have access to the expression level of
only one gene, in this case Kr.

Using a data set of 38 wild-type embryos that fall into
a 4-min time window centered at 42 minutes into nuclear
cycle n.c. 14, we construct decoding maps based on the
information carried by one, two, three, or all four gap
genes (Figure 3). Note that although we always decode
the gene expression levels from single embryos, as in Eq
(4), it is convenient to show maps that are averaged over
all the embryos « in our data; we will return to the is-
sues of embryo-to-embryo variability of the maps in the
discussion of mutant embryos, below. For most locations
in the embryo, decoding based on a single gene provides
little information, as for Kr (Figures 2 and 3a); other ex-
amples are in Figure Slc. In small regions of the embryo,
decoding can be more precise, but substantial ambigui-
ties remain where one expression level is equally consis-
tent with two different implied positions. Decoding based
on two (Figures 3b and S1d) or three (Figures 3c and Sle)
genes results in less ambiguity and more precision. We
report the decoding maps in units of probability density,
because the x coordinate is treated as continuous, which
lets us construct mathematical objects independent of
the choice of binning scheme for positions. The increase
in precision corresponds to the sharpening of the poste-
rior distribution, whose peaks get higher and narrower
as we include increasing numbers of gap genes. This in-
crease is reflected in the dynamic range of grayscales for
each map, since by normalization narrower distributions
Prap(x*|z) have higher density at their peaks. We also
quantify this sharpening by computing the standard de-
viation of these distributions and finding the median over
x as summarized in Figure S1i. With all four genes, the
distribution Ppap(2*|x) is approximately Gaussian, with

a width o, ~ 0.01L for nearly all points along the em-
bryo’s AP-axis (Figures 3d and Sba). This is also the
precision with which subsequent developmental markers,
including the pair-rule gene stripes and the cephalic fur-
row, are generated [12, 27].

Remarkably, one percent is less than the distance be-
tween two adjacent cells, suggesting that the gap genes
could specify every cell along the AP-axis [12, 25]. Fig-
ure 3 thus shows how multiple expression levels com-
bine to synthesize an unambiguous code for position that
reaches extraordinary precision. We emphasize that we
decode positions based on graded expression levels of the
gap genes [12, 28], which contrasts with the traditional
interpretation of the gap genes as forming “expression do-
mains” that are either on or off [29-31], or with the use of
binary switch-like or boolean networks to describe genetic
circuits more generally [32, 33]. If we collapse the con-
tinuous profiles into on/off domains, then decoding maps
are ambiguous even in wild-type embryos (Figure S1f,g),
and meaningful predictions for stripe positions in the mu-
tant embryos (below) are impossible. Thus, rather than
forming a set of four binary switches, the gap gene ex-
pression levels represent a more continuous, analog coor-
dinate system that specifies position for individual cells.

Decoding in mutant embryos

The fact that the four gap genes carry precise, unam-
biguous information about position does not mean that
the embryo uses this information to determine cellular
identities. To test whether this is the case, we exploit
the powerful genetic tools that have been established in
Drosophila. We perturbed the maternal signals Bicoid
(bed), Nanos (nos), and Torso-like (¢sl), which strongly
affect the gap gene network (Figure S2). Importantly, be-
cause we have perturbed only the inputs to the gap gene
network, we expect that decoding is carried out with the
same mechanism in wild-type and mutant embryos. If
the optimal readout strategy is used by the embryo, our
decoder should generate meaningful position estimates in
mutant backgrounds [Eq (4)], and these estimates can be
compared directly to actual position readouts in mutant
embryos, using locations of pair-rule expression stripes
as positional markers.

We have analyzed embryos from lines in which we
delete the three maternal signals individually, in pairs,
and all together. The latter is a control which confirms
that all information about position indeed is provided by
the three maternal signals (Figure S2k). For each of the
remaining six combinations, we measured expression lev-
els for all four gap genes simultaneously, as summarized
in Figure S2a-h. In every case, we construct the posterior
distribution P(z*|{g¢;}) from wild-type gene expression
levels in absolute units, and then apply it to the mutant
embryos measured in the same batch, thus avoiding vari-
ations in staining, imaging, normalization, etc., across
batches. The results of these analyses are a series of
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FIG. 3: Decoding with increasing number of gap genes in wild-type embryos. Top row: dorsal fluorescence intensity
profile(s) from 38 embryos 40-44 min into n.c. 14 (mean £ SD); units scaled so that 0 (1) corresponds to minimum (maximum)
mean expression. Bottom row: decoding maps, P(z*|z) from Eq (4), averaged over 38 embryos. a. Decoding using single gene
(Kr, blue); see also Figure Slc. b. Decoding using a combination of two genes, Kr (blue) and Hb (red), see also Figure S1d. c.
Decoding using three genes, Kr (blue), Hb (red), and Gt (orange), see also Figure Sle. d. Decoding using all four gap genes.

decoding maps, shown in Figure 4, which should be com-
pared to the map for wild-type embryos in Figure 3d.

Before proceeding to analyze these maps and to test
our predictions, we emphasize that even the possibility
of decoding the expression patterns mutant backgrounds
is non-trivial. The optimal decoder is built out of the
distribution of expression levels that we see in wild-type
embryos, and these fill only a very small region of the full
four dimensional space of possibilities. If the expression
levels in mutant embryos fell far outside this region, then
we would have no reason to trust our description of the
distributions P({gi}|z), and hence no basis from which
to make reliable inferences. To test whether this could
be the case, we measured the similarity between mutant
gap gene expression and the mean wild-type pattern [x?,
Eq (2)], and compared these to the x? values measured
in wild-type embryos; for details see Star Methods, Fx-
ploring mutant embryos.

Figure S2i shows the cumulative distribution of y?
across the entire population of wild-type embryos, from
all six experiments. Normalized per gene, the mean of
x? is one (by definition), but the distribution has a tail
extending to nearly ten times this value. As expected,
x2 values from mutant embryos are larger than in the
wild-type case, but there is a surprising degree of over-
lap between the two distributions: the largest value of
x2 that we observe in wild-type embryos is larger than
98% of the values that we see in mutant embryos; and
Figure S2j shows that the extreme values of x? in the
mutant backgrounds are confined to small regions of the
embryo, rather than being widely distributed. Deleting
maternal signals introduces large perturbations, yet the
gap gene network responds in a way that is not so far out-
side the distribution of possible responses under natural
conditions. This fact is what makes decoding positional
information in mutant embryos feasible.

Many features of the decoding maps in Figure 4 are
expected from previous, qualitative characterizations of
these mutant backgrounds. Thus, when we delete tsl the
distortions are largely at the two ends of the embryo (Fig-
ure 4a), since expression of tslis confined to the poles [34],
and when we delete osk (which controls the localization
of the nos signal), we see major distortions in the pos-
terior (Figure 4c), consistent with nos being a posterior
determinant [35]. When we delete bed there are major
distortions in the anterior portion of the map (Figure
4b), where the concentration of Bed protein is highest,
but distortions of the map extend along the entire length
of the embryo, in contrast to the more local effects of
removing tsl or nos.

To further characterize the maternal patterning inputs,
we examined double mutant backgrounds in which the
positional information is supplied by the single remain-
ing maternal input. When the only spatial information is
supplied by tsl or nos (in embryos from mothers doubly
mutant for bed nos or bed tsl, respectively), the resultant
embryos lack much of the normal gap gene pattern. In-
ferred positions based on the levels of the remaining gap
genes at no point match the diagonal defined by the wild
type pattern.

One challenge in analyzing embryos with patterning
information only from Bed is that removal of Nos and
Tsl results in uniformly high ectopic levels of maternal
Hb [40, 41]. These uniform levels confer no positional
information but the repressive activity of Hb as a tran-
scription factor blocks expression of gap genes and thus
all patterning in the abdomen [42, 43]. As an alternative,
we have generated germline clones [44], which lack mater-
nal activity from hb, as well as positional cues from nos
and tsl. These mutant backgrounds have a rich collection
of pair-rule stripes, which will provide the opportunity for
more detailed tests of our theory. Perhaps surprisingly,
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FIG. 4: Decoding maps and stripe locations in mutant embryos. Average decoding maps for six maternal mutant
backgrounds (whitened APT symbols above the panels signify whether the anterior (A), posterior (P), or terminal (T) systems
are deficient): a. etsl; b. bed®t; c. osk; d. bed®losk; e. Bed-only germline clone; f. bed®ltsl. Grayscale is the same as
Figure 3d. Measured Eve expression profiles in wild-type embryos (left side of a and d), and in mutant embryos (below each
corresponding decoding map); individual profiles (gray), mean profile (black), and peak locations (black dots), units scaled so
that 0 (1) corresponds to minimum (maximum) mean Eve expression within each genotype. Average locations of wild-type
Eve stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: we expect stripes at locations
along the mutant embryo axis where the horizontal dotted lines intersect the peak of the probability density. Open black circles
indicate intersections between horizontal dotted lines and corresponding average locations of Eve stripes in mutant embryos
(vertical dotted lines). Horizontal starred bars (panels b and f) indicate locations where the expressed number of Eve stripes
is variable (see Figure S6 for examples). The red vertical dotted line in ¢ shows an observed Eve stripe which is not predicted
by the decoding map. The red horizontal dotted line in e shows a predicted Eve stripe which is not observed in the mutant
embryo.When the horizontal lines intersect a broad probability distribution, we expect to observe diffuse Eve stripes as in f.
Panel a shows additional predictions for Run (cyan) and Prd (magenta) stripes (see also Figures S3 and S4); the three different
sets of pair-rule stripes provide a dense collection of markers, tracing the ridge of implied positions in the decoding map with
very high accuracy.

decoding maps in these mutant embryos (Figure 4e) have  low concentrations [45].
a nearly continuous ridge of density, with a width close
to that in wild-type, that runs nearly from /L = 0.3
to /L = 0.8. This is qualitatively consistent with the
observation that these embryos show normal pattern be-
tween the gnathal and 6th abdominal segments. It is also
surprising that we can achieve precise (if distorted) de- While the predictions of optimal decoding are in qual-
coding at /L ~ 0.8, where the only source of positional itative agreement with expectations from previous work,

information is the Bed protein, which is present at very it is crucial that this theoretical framework makes de-
tailed quantitative predictions about positions (for de-

Testing the dictionary, quantitatively



tails see Star Methods Predicting pair-rule stripe posi-
tions). It is clear that the peaks of pair-rule expression
(stripes) are positional markers that predict features of
the final body plan, and thus we take these peaks as a
measure of the embryo’s own readout of positional in-
formation Figure S5b-d. Independent of our work, it is
much less clear how levels of pair-rule expression relate
to development; therefore, the units of the pair-rule gene
expression are normalized within each genotype, and we
do no attempt comparisons of these levels across geno-
types.

As a first example, when we delete bed (Figure 4b),
quantitative distortions of the map extend even into the
posterior half of the embryo, so that the map is shifted,
and the plot of z* vs z (following the ridge of high proba-
bility in the map) does not have unit slope. In particular,
expression levels found at /L = 0.7 (or at /L = 0.55)
have their most likely decoded values at z*/L = 0.75
(or */L = 0.67). But in the wild-type embryo, posi-
tions /L = 0.75 and /L = 0.67 are associated with the
stripes vii and vi of expression for the pair-rule gene ewve,
as shown at left in Figure 4. If the machinery for inter-
preting gap gene expression is using the same dictionary
that we have constructed mathematically, then we pre-
dict that the bed deletion mutants should shift these two
eve stripes to /L = 0.7 and /L = 0.55, which is what
we see (Figure 4b). More dramatically, expression levels
at /L = 0.23 in the bed mutant background are decoded
as z*/L = 0.75 with high probability, and correspond-
ingly there is an eve expression pattern at this anoma-
lously anterior location. This is predicted to be not a
displacement of the first (nearest) eve stripe, but rather
a duplication of the seventh stripe, which is consistent
with classical observations on cuticle morphology in these
mutant backgrounds [46], and with recent RNAi/reporter
experiments [47].

The quantitative agreement between the decoding
maps and the locations of the eve stripes extends to all six
examples of single and double maternal mutants shown
in Figure 4, as well as to the prediction of stripe loca-
tions for the pair-rule genes paired (prd) and runt (run)
(Figures S3 and S4). Notably, there is good agreement
both when the shifts are small, as with the deletion of ¢sl
(Figure 4a), and when the shifts are much larger, result-
ing in the deletion of several stripes, as with the bed osk
and bed tsl double mutants (Figures 4d and f). In cases
where the implied position of a stripe crosses a diffuse
band of probability density in the decoding map, as in
the anterior of the bed tsl mutant, we might expect that
there would be expression of eve but not a sharp stripe,
and this is what we see (Figure 4f).

For simplicity Figure 4 shows decoding maps that are
averaged over all embryos for each mutant line. If we
focus instead on decoding maps for individual embryos,
their variability predicts the embryo-to-embryo variabil-
ity in pair-rule gene expression. In particular, for bed tsl
mutants the positions that map to the wild-type locations
of eve stripes iv and v (z*/L = 0.56 and 2*/L = 0.62)
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FIG. 5: Predicted vs observed locations of pair-rule
stripes in mutant embryos. Color scale indicates the dis-
placement of the observed peak from its wild-type location
(Az/L). Horizontal axis: measured pair-rule stripe positions
in mutant embryos (mean £ SD across embryos of a given
genotype). Vertical axis: predictions from decoding the gap
gene expression levels in mutant embryos (mean £+ SD across
embryos of a given genotype). We predict and observe a total
of 70 stripes. Additionally, we predict and observe 11 diffuse
stripes which cannot be quantified by a single peak location
and are analyzed separately (Figure S5). We observe, but
do not predict 3 stripes; and predict, but do not observe 3
stripes.

vary substantially in the window 0.4 < z/L < 0.6. If we
look at the eve expression patterns in individual embryos
(thin lines at bottom of Figure 4f; for detailed analysis see
Figure S6a-c), we see two peaks with variable positions,
as predicted. For the bed mutant, the average decoding
map again has density at z*/L = 0.56 and z*/L = 0.62
(Figures 4b and S6d-f), but when we decode the gap gene
expression patterns from individual mutant embryos we
find that these features vary not only in their position
but even in their presence or absence, so that individual
embryos are predicted to have a variable number of eve
stripes, and this is again what we see.

There are a small number of errors in our predictions.
In the osk mutants a posterior Eve stripe is observed
where none is predicted (Figure 4c), and in bed osk mu-
tants we predict a variable number of Prd stripes (Figure
S3d). A Run stripe is predicted at /L ~ 0.6 where none
is observed (Figure S4c); and we have no prediction for
the very blurred band of Run expression at x/L > 0.7
(Figure S4c). In addition, in the bed, tsl mutant a Run
stripe is predicted at x/L ~ 0.45 where none is observed
(Figure S4f). Another failure occurs at a rare point where



the combinations of gap gene expression are outside the
range sampled in the wild-type embryos (Figure S2j), and
thus we may be simply extrapolating the probability dis-
tributions too far.

In the wild type embryo, local decoding of gap gene ex-
pression levels always leads to smooth maps, so that spa-
tial averaging would not result in any systematic changes.
Further, fluctuations in the expression level are correlated
over significant distances [50], so that spatial averaging
also would not reduce the noise or enhance the reliability
of decoded positions. These arguments fail at a small
number of locations in the mutants where the decoding
map has a dramatic discontinuity, as in the osk mutants
(Figure 4c). In this case, any spatial averaging would in-
volve combining vastly different signals, and the outcome
would depend on the details of the averaging process, so
we lose predictive power based on the maps alone.

Finally, a more quantitative survey compares how well
the predictions of pair-rule stripe positions based on the
decoding maps correspond to the actual measured po-
sitions in the six mutants for all the eve, run, and prd
stripes (Figure 5). For nearly all of the 70 identifi-
able pair-rule stripes, the predicted position agrees with
the measured position within the measured embryo-to-
embryo variability. Further, Figure S6g directly com-
pares the horizontal and vertical error bars in Figure 5,
and reveals that the measured variability in stripe posi-
tions also is in good agreement with the predicted vari-
ability, again a highly nontrivial connection between the
decoding map and embryo-to-embryo fluctuations in mu-
tant gap gene expression. This rich and tight correspon-
dence between measurements and predictions for stripe
positions (and even their variability) implies that devel-
opmental enhancers in the Drosophila embryo implement
a close analogue of the mathematically optimal decoding
scheme, efficiently reading out gap gene expression lev-
els and transforming them into a positional specification
with 1% accuracy, sufficient for precise assignment of cel-
lular identities along the anterior-posterior embryo axis.

Dynamics in wild-type embryos

Gap gene expression levels vary in time, even within
nuclear cycle 14 [7]. In principle we could ask about the
information contained in these expression levels, moment
by moment, allowing for the possibility that the best de-
coding of this information also varies in time. If, on the
other hand, we imagine that the embryo implements a
single decoder, optimized—as in the discussion above—to
extract maximum positional information at the moment
when this information itself is maximal [12, 25], then we
necessarily predict that the map of implied vs actual po-
sition will change over time. Following the same logic
as in our analysis of mutants, this then predicts that the
stripes of pair rule gene expression should shift over time,
and this is known to happen. The question is whether our
optimal decoder predicts the correct quantitative pattern

of stripe dynamics.

The possibility of using dynamics as a test of opti-
mal decoding hinges on our ability to stage the develop-
mental time of fixed embryos with one minute precision
during nuclear cycle 14 [25]. Gap gene expression shows
large temporal changes, with Kr, Gt, and Kni increasing
in expression, and Hb concentration showing a complex
non-monotonic change in the anterior with a concomitant
increase in the posterior (top panels in Figure 6a—c). Si-
multaneous to these radical gap gene expression changes
between hours 2—3 of the embryo’s development, the pos-
terior Eve stripes (especially stripes v—vii) undergo sub-
tle but significant shifts towards the anterior (Figure 6d),
consistent with previous reports [37, 38].

To analyze these data, we use the same decoder as dis-
cussed above, which is constructed from data taken dur-
ing a single 5-min time interval (40-44 min into n.c. 14).
This decoder translates the changes in gap gene expres-
sion to a temporal sequence of decoding maps, visualized
in an animation of successive probability distributions
(Supp. Movie M1). Three selected snapshots at 15, 30,
and 50 min into nuclear cycle 14 highlight initially radical
changes (Figure 6a vs 6b), followed by subtle refinements
(Figure 6b vs 6c).

Fifteen minutes into nuclear cycle 14, the decoding
map has clear structure in the central region of the em-
bryo, but pair-rule gene expression does not show indica-
tions of its final striped pattern. This delay in activation
of pair-rule genes may reflect specific timing mechanisms,
and the initial broad profiles of pair-rule gene expression
may be controlled by different pathways, such as direct
activation of Eve by Bed [39].

Thirty minutes into nuclear cycle 14, the situation is
very different. Using the same decoder, gap gene expres-
sion now provides a nearly unambiguous map of implied
positions for locations /L > 0.4 (Figure 6b). Six of the
seven Eve stripes are now detectable at locations that are
quantitatively consistent with the decoding map’s pre-
dictions. Stripe i occurs at a position where the opti-
mal decoding is ambiguous, and its position may reflect
details of its activation mechanism that led to its early
expression already 15 minutes into nuclear cycle 14. Al-
ternatively, this could be a “misprediction” of stripe ii,
which is subsequently resolved. Interestingly, while the
decoding map at this time point exhibits relatively low
positional errors, it also displays a small but significant
systematic error, visible as a slight tilt and bend of the
probability density away from the diagonal (Figure 6b).
Posterior positions thus are decoded to be slightly further
posterior, and the most posterior positions correspond to
a broad smear of probability density at z*/L ~ 0.75. If
the embryo is using this decoder, then Eve stripes ii-
vi should occur at positions slightly posterior to their
locations at 40 min (when our decoder is constructed),
and this agrees with experiment. The inferred position
x* /L ~ 0.75 is the position at which Eve stripe vii should
occur, and the smear in the decoding map then predicts
that this strip should should be more diffuse and vari-
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FIG. 6: Decoding maps from dynamic gap gene expression patterns. a—c. A single decoder built from gap gene
expression at 40-44 min into n.c. is used to decode gap gene expression patterns in embryos from 15 4 2 min, 30 4+ 2, and
50 + 2 min into n.c. 14, respectively. Grayscale is the same as Figure 2d. Top panels show the mean gap gene expression +
s.d. (shading) across the embryos in each decoded time window. Bottom panels show mean (black line) and individual (gray
lines) profiles of Eve patterns in a time bin 8 minutes later into n.c. 14. The 8 minute delay is introduced to account for the
time needed to synthesize Eve proteins [36]. Dots in the main decoding panels mark the intersections of the average locations
of Eve peaks in time window 45-55 min n.c. 14, with the average locations of Eve peaks in the corresponding time window
for each panel. Light grey open circles in ¢ correspond to locations of Eve peaks in b, to illustrate the shift. Note that Eve
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where we show predicted versus measured stripe loca-
tions. Thus, using the single optimal decoder to instan-
taneously decode gap gene expression throughout the nu-
clear cycle is nearly sufficient to account for the dynamics
of Eve stripes, without making an explicit model for these

able, as well as shifted on average to the posterior, all in
agreement with the data.

As developmental time progresses, the ridge of
high probability in the decoding map rotates counter-

clockwise and sharpens in the posterior, predicting shifts
of Eve stripes towards the anterior and a sharpening of
the first and the seventh Eve stripe, again consistent with
the measurements (Figure 6¢). The quantitative success
of these predictions for the subtle dynamic shifts of Eve
stripes in wild-type embryos is summarized in Figure 6e,

dynamics.

Finally, we return to the question of how much infor-
mation could be extracted from the gap gene expression
patterns if we allow ourselves to build a different decoder
at each moment in time. The results of this exercise



are shown in Supp. Movie M2. Perhaps surprisingly, this
adaptive decoding is largely unambiguous throughout the
entire hour of nuclear cycle 14, and improvements in the
precision of decoding are quantitative rather than quali-
tative. This is important because it means that our pre-
diction, for example, of variability in Eve stripe vii arises
not because there is no information available to define
this position precisely, but rather because the decoder
which is tuned to extract maximal information late in
n.c. 14 fails to do so at earlier times. In this way, the dy-
namics of the stripes provide a deep if subtle test of the
idea that the enhancers controlling pair-rule expression
implement the optimal decoder that we have constructed
theoretically.

Discussion

We have focused here on just one step in the flow of
information through a genetic network, the transforma-
tion from broad patterns of gap gene expression to the
sharp stripes of pair-rule gene expression. But even this
one step is complex. The approach we have taken here
is to use an optimization principle as a way of circum-
venting this complexity. This approach is common in
neuroscience, where there is a productive distinction be-
tween what a neural circuit is computing and how it is
being computed.

The idea of optimality appears in many different bio-
logical contexts, on all scales from the folding and dynam-
ics of single protein molecules to the behavior of animal
groups. This is not the place for a complete review of
these ideas, but it seems fair to note that the volume of
opinion exceeds the volume of evidence, on either side of
the discussion. We emphasize that, in the version that
we consider here, optimality is not a matter of opinion or
aesthetics, but rather a well defined theory that makes
quantitative predictions [23].

Defining optimality. It is not controversial that gap
gene expression levels carry information about position
along the anterior—posterior axis of the fly embryo. There
is much less consensus about how this information is rep-
resented, and how it is used by the embryo to guide fur-
ther steps in development. The idea we have pursued is
that cells make use of all the information available from
local measurements of the gap expression levels at a single
moment in time. This hypothesis defines a mathemati-
cal decoding problem that has a unique solution, and the
resulting decoding maps built from gap gene expressions
can be tested directly against the embryo’s own readout
of positional information, the pair-rule expression pat-
terns. In other words, optimality predicts a quantitative
connection between two different classes of experimental
data, and this connection is parameter—free.

Passing quantitative tests. If the embryo makes opti-
mal use of the available information, then the theory pre-
dicts how altered expression levels in mutants will lead to
altered maps of cellular identity. If, on the other hand,
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the system makes sub—optimal use of the local gap gene
signals, and restores precision by appeal to other signals,
then the optimal decoding algorithm will not predict the
observed map distortions. This is a detailed and stringent
test of the theory: as summarized in Figure 5, we have
seventy pair-rule gene stripes across six different mutants
where theory and experiment agree quantitatively, plus
more than a dozen instances in which theory predicts
diffuse or variable stripes and this is what we see.

Constraints. Arguments from optimality often are sus-
pect because they ignore many details. We pose op-
timization as an abstract mathematical problem, inde-
pendent of the biological hardware that implements the
functions we are optimizing, and independent of the an-
cestral mechanisms from which this hardware evolved.
Thus, optimization is equivalent to the hypothesis that
real molecular mechanisms are sufficiently flexible to pro-
vide good approximations to the optimal estimates, and
that evolutionary pressures have been strong enough to
drive these mechanisms close to this optimum. We use
optimization principles to understand the functional be-
havior of a real biological network, and it is perhaps sur-
prising that one can make successful quantitative predic-
tions without reference to molecular mechanisms. Indeed
for many years, detailed models of genetic networks have
been tested by making predictions of mutant phenotypes,
but we are unaware of any example in which comparably
detailed quantitative agreement has been achieved.

Spatial and temporal averaging. What we test here is
the idea that each cell in the embryo makes optimal use
of the information carried by its own gap gene expression
levels at a single moment in time. This raises the ques-
tion of whether noise levels could be reduced by spatial
and temporal averaging, so that the system in fact fails
to reach its true optimal performance. To begin, the pro-
tein concentrations that we analyze here accumulate in
time, which means that signals at one moment already
reflect substantial temporal averaging, as can be seen by
comparing noise levels in mRNA and protein [48]. Fur-
ther, we have argued that the precision of the gap gene
response to maternal inputs depends on some degree of
spatial averaging, and this is reflected in spatial correla-
tions of the noise [14], which may be enhanced by other
network interactions [50]; a consequence of these corre-
lations is that further spatial averaging will not result
in substantially improved estimates of absolute position.
Finally, it is striking that our optimal decoding based on
a single moment in time allows us to correctly transform
the dynamics of gap gene expression levels into shifts of
the Eve stripes during the course of nuclear cycle 14. All
of these arguments suggest that there is no extra informa-
tion that can be extracted by averaging, and that dynam-
ics at level of pair-rule genes may just be a reflection of
dynamics at the level of gap genes. In these senses, spa-
tiotemporal averaging is not essential for understanding
how positional information is encoded by the gap genes.
This does not mean that no such averaging occurs: in
the same way that spatiotemporal dynamics within the



gap gene network may be essential in extracting maximal
information from the maternal inputs [16-19], such dy-
namics may be important in implementing the optimal
decoding algorithm that we have identified here, and in-
sulating it from spurious noise sources. Small amounts
of spatial averaging would change our predictions only in
those places where the mutant maps have sharp discon-
tinuities, and indeed the few incorrect predictions of the
theory are at such discontinuities (e.g., in Figure 4c).

Further tests of the theory. Simultaneous measure-
ments of pair-rule expression with all of the gap genes
would allow us to test directly whether, for example, the
predicted variations in stripe number are correct, embryo
by embryo, rather than just in aggregate. More subtly,
since there are spatial correlations in the fluctuations of
gap gene expression levels [50], our decoding predicts that
there should be correlations in the small positional errors
that occur even in wild-type embryos, and hence the fluc-
tuations in position of the pair-rule stripes must also be
correlated. These correlations should be different in the
mutants, in ways that can be predicted quantitatively.
We note that while we have measured expression pat-
terns along the dorsal side at the mid-saggittal plane of
the embryo, the spatial patterns of gap and pair-rule ex-
pression vary along its dorso-vental (DV) axis. If the de-
coding map changes with DV positions, this would imply
that the pair-rule genes read simultaneously AP and DV
positional information. Most fundamentally, the molec-
ular mechanisms that lead from gap gene product con-
centrations to pair-rule expression must implement the
dictionary that we have developed. Thus, we should be
able to predict the functional logic of these developmental
enhancers by asking that they provide an optimal decod-
ing of positional information, rather than fitting to data.
More generally, the approach presented here is directly
applicable to any system where positional information is
encoded through spatially distributed molecular concen-
trations. One such example is the decoding of position in
the developing vertebrate neural tube, where an optimal
decoding from antiparallel morphogen gradients makes
similar quantitative predictions [51]. However, it is not
yet clear whether the natural generalization of our ap-
proach is to spatial patterning in other organisms, or to
information flow in other genetic networks.

Connections to classical ideas. Our maps of implied
position as a function of actual position provide a quan-
titative, probabilistic version of the older idea that one
can plot cell fate vs position—a fate map—even in mu-
tants; see, for example, Ref [22]. In its original form, this
depends on the fact that what we see in the mutant are
rearrangements, deletions, and duplications, but no new
pattern elements. It usually is assumed that this arises
from canalization [52, 53]: although the early stages of
pattern formation might generate new and different sig-
nals in response to the mutation, subsequent stages of
processing force these signals back into a limited set of
possibilities. What we see here is that even signals that
are responding immediately to the primary maternal in-
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puts can be decoded to recapitulate the patterns seen in
the wild-type. There is no need for subsequent steps to
drive the pattern back to something built from wild-type
elements, since it already is in this form.

Implications for development. In the prevailing view
of Drosophila development, positional information is “re-
fined” across successive layers of the patterning network
[37, 54]. Noisy and variable maternal signals are pro-
cessed by the gap genes to establish sharp domain bound-
aries. These serve then as anchors for the even more re-
fined patterns of pair-rule genes. This refinement process
suggests that the gap gene outputs should not suffice for
precise and unique positional specification, in contrast to
what we see. Precise positional information is thus avail-
able and this precision implemented in the Drosophila
patterning system as early as during the 14th interphase
[55]. This surprising finding raises the question about the
role of pair-rule and subsequent regulatory layers. While
beyond the scope of this work, one interesting possibility
is that subsequent layers serve to transform the positional
information, fully available already at the gap gene layer,
into an explicit commitment to repeated but discrete cell
types, arranged in a segmental pattern [56-58].

Coda. Perhaps the most important qualitative conclu-
sion from our results is that precision matters. We are
struck by the ability of embryos to generate a body plan
that is reproducible on the scale of single cells, corre-
sponding to positional variations ~ 1% of the length of
the egg. As with other examples of extreme precision
in biological function, from molecule counting in bac-
terial chemotaxis to photon counting in human vision
[59, 60], we suspect that this developmental precision is
a fundamental observation, and to the extent that pre-
cision approaches basic physical limits it can even pro-
vide the starting point for a theory of how the system
works [23, 61]. But precision in the final result of develop-
ment could arise from many paths. We have a theoretical
framework that suggests how such precision could arise
from the very earliest stages in the control of gene ex-
pression, if this control itself is very precise, and this has
motivated experiments to measure gene expression levels
with correspondingly high precision. What we have done
here is to bring theory and experiment together, predict-
ing how quantitative variations in gap gene expression
levels should influence the developmental process on the
hypothesis that the embryo makes optimal use of the
available information, in effect maximizing precision at
every step. Genetics then gives us a powerful tool to test
these predictions, manipulating maternal inputs and ob-
serving pair-rule outputs. These rich data are in detailed
agreement with theory, providing strong support for this
precisionist view.
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FIGURE S1, Related to Figures 2 and 3: Building a decoder using graded levels of gap gene expression. a-b.
Estimation of gap gene covariance matrix from wild-type embryos. For each of 7 wild-type datasets taken independently
(n = 37,29,43,32,29,24, and 102 embryos) we compute the covariance matrix of fluctuations in gap gene expression levels at
each point along the AP axis. Errors within an experiment are standard deviations across matrices computed from random
halves of the data, while errors across experiments are the standard deviations of the 7 means of the covariance matrix elements.
The left panels show off-diagonal covariance matrix elements at each point along the AP axis; mean (black) 4 errors across
experiments (grey shading). For reference, we also show the covariance matrix elements from the single largest wild-type
dataset (n = 102) embryos (red) and the errors within this experiment (red shading). Scatter plot shows errors within single
experiments (chosen is the largest value from the 7 datasets) vs error across experiments on estimating all covariance matrix
elements. c-e. Decoding maps from one, two or three gap genes. Top rows: dorsal expression profiles, 40-44 min into nuclear
cycle 14; gene as indicated in panel. Mean (lines) + s.d. (shading) across 38 wild-type embryos. Bottom rows: average
decoding maps. f-h.Decoding based on traditional binary, threshold-based readout is imprecise and ambiguous. f. Decoding
from gap genes being ON or OFF, with ON state declared when they are expressed at more than half of their maximum mean
level (top). g. As in f, but with thresholds set so that the mutual information between z* and x is maximized. h. Decoding
map based on graded variations in gap gene expression, replica of Figure 3d for comparison. i. Precision of decoding based
on different combinations of genes. We compute the standard deviation of the distributions P(z*|z) and then compute the
median over all z. Results are plotted for decoding based on all combinations of 1, 2, and 3 genes, all four genes (“graded”),
and four genes thresholded into on/off. Hashed bars are the results for the 38 embryo wild-type dataset restricted to the 40-44
min developmental window in nuclear cycle 14; non-hahsed bars are the results for the 102 embryo dataset restricted to the
38-48 min developmental window. For the ‘graded’ decoding, the difference in median positional error between the two embryo
selections is mostly due to the systematic change with time in the gap gene expression profile shapes in the 38—48 min window.
As, unlike in Ref [12], the profiles here are not normalized or aligned prior to decoding, that systematic variation with time
increases the positional error in the 38-44 min window relative to the 40-44 min window.
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FIGURE S2, Related to Figure 4: Decoding is possible in mutant embryos. a-h. Gap gene expression in mutant
embryos. Dorsal gap gene expression profiles (mean + SD across embryos aged 38-48 min into nuclear cycle 14; n indicates
number of embryos) in mutant backgrounds. The expression levels g are measured in units of maximal wild-type expression
levels, which are measured from a single slide wild-type embryos collected in the same time window (number of embryos is
shown in parenthesis). a,e. Terminal system (via tsl), b,f. Anterior system (via bed), c,g. Posterior system (via nos), is
absent or the only input of positional information. Whitened APT symbols above the figures signify whether the Anterior,
Posterior, or Terminal systems are deficient. For completeness we also show the gap gene expression profiles in (h.) wild-type,
and (d.) triply mutant embryos. i. Gap gene expression levels in mutants largely overlap those observed in wild-type embryos.
Cumulative probability (y-axis, log scale) as a function of x? per gene—x% from Eq (2), divided by K = 4. It represents the
probability that x? per gene is greater than the value on the x-axis in wild-type embryos (red), and mutant embryos (black).
Vertical dashed line marks the maximal x? observed in wild-type data set; the intersection of dashed line with black line shows
that this variation in wild-type encompasses 98% of the points in mutants. j. Spatial distribution of x? values along the AP
axis of mutants. x* per gene for individual mutant embryos as a function of position along the AP axis (grey lines), together
with a limit on the largest x? per gene observed in wild-type embryos as in i. (horizontal red dashed lines). k. Deleting three
maternal inputs abolishes positional information. Decoding map for the triple deletion mutant bed, osk, tsl. Positions of Eve
stripes in the wild-type (left) fail to intersect the map, consistent with the absence of stripes in the mutant (bottom).
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FIG. S3: (Related to Figure 4) Decoding maps and Prd stripe locations in mutants. Average decoding maps for six
maternal mutant backgrounds: a. etsl; b. bed®'; c. osk; d. bed®losk; e. Bed-only germline clone; f. bed®ltsl. In each
decoding panel, we use the average locations of the seven peaks of wild-type Prd expression (left side of panels a and d) to
predict Prd stripe locations in the mutant backgrounds where horizontal dotted lines intersect the probability density. Open
black diamonds mark intersections between horizontal dotted lines and corresponding average mutant Prd stripe locations
(vertical dotted lines). Measurements of the actual Prd expression profiles in each mutant background are shown below the
corresponding decoding panel, where filled black circles indicate the profile peaks. Intensity in all decoding panels refers to
wild-type intensity in Figure 2d. Roman numerals above the horizontal dotted lines denote the wild-type Prd stripe number.
Horizontal starred bars (panels b and f) indicate locations where the expressed number of Prd stripes is variable, which is
captured qualitatively by the decoding maps. Vertical red dotted lines in panel d mark peaks with variable expressivity, which
are not predicted by the decoding map.
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FIGURE S5, Related to Figure 5: Predicting pair-rule stripe expression from mutant decoding maps in individual
embryos. a. Positional error of the wild-type distribution computed as in Ref [12], with mean (x/L) = 0.010£0.005 (red), and
computed by locally fitting a Gaussian around the peak of the posterior probability density, with mean 5(z/L) = 0.008 & 0.002
(black). The two measurements overlap where the posterior probability density is unimodal, consistent with the assumption
that the unimodal peak is Gaussian. When there are ambiguities, such as the multi-peaked regions at /L ~ 0.2 and =/L ~ 0.4,
the black line is lower than the red, which also measures the spread across multiple peaks. b-d. Predictions, P(z* = z4|x),
from individual wild-type and mutant decoding maps. Rows are for the genes eve (b.), prd (c.), and run (d.), and roman
numerals indicate stripe number. Average wild-type decoding map (as in Figure 2d) with horizontal dotted lines marking the
average locations of pair-rule peaks, z,. Panels P(z* = z,|z), with colors marking different stripes s (legend). The average
pair-rule expression is plotted (black solid line), scaled for visualization.We exclude the anterior-most Prd stripe (c.) from
further analysis, because it is not well defined. Note also weak “echoes” of pair-rule stripes 1 and 2 in the far anterior (for
z < 0.3), which we did not detect in the data. These may be missing because of influences from other gap genes that are active
in the far anterior. Stripe predictions in mutant embryos are annotated as peaks, diffuse stripes and mistakes. Filled black
circles on the x-axis mark the average locations of measured peaks, which are successfully predicted from the decoding maps
and plotted in Figure 5. Predicted diffuse stripes are marked by filled diamonds over horizontal lines, which span the diffuse
regions. Open triangles show anterior “echoes” of pair-rule stripes as in wild-type. Interestingly, a duplication of Eve stripe
7, and diffuse expression of stripes 3-4 are found expressed where predicted in the anterior of bed™' embryos. Red stars shows
observed, but not predicted stripes. Black stars shows predicted, but not observed stripes.
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FIGURE S6, Related to Figure 5: Features of pair-rule stripe predictions. a-f. Predicting variable number of Eve stripes
in bed tsl and bed®' mutants. Decoding maps from individual mutant embryos, gray levels are as Figure 2d. Horizontal dashed
lines indicate the average locations of wild-type Eve peaks, and their intersections with the decoding map are shown in the side
panel (P(z* = zs|z)). In bed tsl embryos stripes iv and v (purple and green open triangles, respectively), and diffuse stripe iii
(yellow open triangle) are predicted to have variable expressivity: a. all stripes are predicted, b. diffuse stripe iii is missing, c.
stripes iv,v are either overlapping or missing. In bed®! embryos stripes iv and v are predicted to have variable expressivity: d.
both stripes are predicted, e. only stripe v is predicted, f. only stripe v is predicted. We find examples of such variability in
the measured Eve expression profiles in mutant embryos, shown in the top panels (Eve™", filled triangles). g. For each stripe
prediction in Figure 4 of the main paper, we compare the observed pair-rule stipe variability (SD in stripe variability across
embryos of the same genotype; shown as x-axis error bar in Figure 4) with the predicted pair-rule stripe variability. Plotting
convention same as in Figure 4. Predicted pair-rule stripe variability (shown as y-axis error bar in Figure 4) is computed as the
SD over pair-rule stripe predictions across individual mutant embryos. For Prd stripes (diamonds) our variability predictions
are not correlated significantly to the observed probability. In contrast, for Eve stripes (circles) and for Run stripes (triangles)
our predictions correlate strongly and significantly with the observed variability (Eve: Pearson correlation 0.65, p-value < 0.001;
Run: Pearson correlation 0.83, p-value < 0.001). h-k. Absolute expression levels predict mutant pair-rule stripe positions
better than normalized expression levels. h. We predict pair-rule stripes in bed®! embryos, whose gap gene expression is in
absolute units, normalized to reference wild-type embryos, or normalized with respect to themselves so that each gap gene’s
dynamic range in the mutant is normalized to between 0 and 1 along the AP axis. j. is analogous as h., but for etsi embryos.
Top panels, mean gap gene expression in respective units; bottom panels, average decoding map with horizontal dotted lines
at the average locations of wild-type Eve stripes (roman numerals). i. and k. Summary of stripe predictions from decoding
based on absolute (black) or normalized (red) expression levels. In h., predictions derived from absolute (black) expression
levels clearly are more predictive about pair-rule gene expression stripe locations. In j., where the absolute and normalized
decoding maps differ in the posterior of the embryo, we quantify the difference in predictive performance by x2, the average
squared deviation between the predicted and measured stripe location, divided by the predicted variability in stripe location
(y-error bar). For all stripes located at /L > 0.55, the x? for the predictions that use absolute gap gene expression levels
(black) is x2ps = 1.0, less than the x2,, ~ 1.5 for the predictions generated using normalized gap gene expression profiles (red);
consequently, even in the etsl mutant embryos where perturbation to gap gene expression is small, the absolute expression levels
of gap genes make predictions about pair-rule stripe locations with smaller errors than the normalized gap gene expression
levels.
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STAR METHODS
KEY RESOURCE TABLE
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead
Contact, Thomas Gregor (tg2@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Fly strains

Embryos lacking single maternal patterning systems were obtained from females homozygous for bed®', 0sk'56 or
tsl*. For embryos with positional information only from the Osk patterning system, we used females homozygous
for bedP! tsl*. To generate Bed-only germline clones lacking wild type maternal contributions from hb, nos and
tsl, FRT — hb¥B — nosBNtsi*/ TM3 females were crossed to y w p[ry+FLP|22 ; p{ry[+t7.2] = neoF RT}82B tsl*
p{w[+mC] = ovoP! — 18} / TM3 males and the resultant larvae subjected to three hour-long heat shocks at 37°C.
To obtain embryos with input only from the Torso patterning system, we used bed?? 0sk'6 females for gap gene
measurements and bed®! nosBN females for pair-rule embryos. The segmentation phenotypes of osk'®®and nos?V
are equivalent [62]. Embryos lacking all maternal patterning systems were obtained from triply mutant bed®! nos®¥
tsl* females. All stocks were balanced with TM3, Sb.

METHOD DETAILS
1. Measuring gap gene expression

Gap protein levels were measured as described in previous work from our group [25]. We draw attention to the
discussion of experimental errors in Ref [25], because this is especially important for our analysis. As before, most of
our analysis is focused on a narrow time window, 4044 min into nuclear cycle 14. Expression levels were normalized
such that the mean expression levels of wild-type embryos ranged between 0 (assigned to the minimal value across
the AP axis of the mean spatial profile, separately for each gap gene) and 1 (similarly assigned to the maximal value
across the AP axis). In detail, gene expression profile g& of any embryo a was calculated as:

Jo — jwp
o gi min, gi
9i = Twt — Twt (Sl)
max,gi min,gj

where ™! and I¥! are the lowest and highest raw fluorescence intensity values of the mean wild-type embryo
fluorescence profiles; I is the raw fluorescence profile of the particular embryo, which can be either mutant or wild-
type. Note that this normalization simply assigns a conventional unit of measurement to gap gene concentrations; no
per-embryo profile “alignment” is used to reduce embryo-to-embryo variance. Mean expression levels for the four gap
genes can be seen at the top of Figure 3d; this figure also shows the standard deviation of each expression level as a
function of position, in the width of the shaded regions. We recall that these standard deviations are the square-root
of the diagonal elements in the covariance matrix Cj(z). In Figure Sla we show measurements of the six independent
off-diagonal elements of this matrix, again as a function of position. Analyzing the covariance matrix estimates across
replicates of wild-type datasets, Figure S1b compares the errors in our estimates of these matrix elements within

single experiments to the variability across experiments; they are in good agreement.

2. Gap gene expression in mutants

To quantify mutant gap protein levels in units of wild-type protein levels, mutants and wild-type embryos were
stained together, and imaged alongside on the same microscope slide in a single acquisition cycle. Fluorescence signals
from mutant embryos were normalized to their wild-type reference for each gap gene, so absolute changes in gap gene
concentrations—not only changes in the shape of the gap gene spatial profiles—were retained in all analyses. Thus,
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an expression level of ¢ = 0.72 in a mutant means that the relevant protein is at the same absolute concentration as
when we see ¢ = 0.72 in the wild-type. A summary of results on the mutant gap gene expression profiles (mean +
SD across embryos) is given in Figure S2a-h.

3. Measuring pair-rule gene expression

To image pair-rule proteins, we used guinea pig anti-Runt, and rabbit anti-Eve (gift from Mark Biggin) polyclonal
antibodies, and monoclonal mouse anti-Pax3/7(DP312) antibody (gift from Nipam Patel). Secondary antibodies are,
respectively, conjugated with Alexa-594 (guinea pig), Alexa-568 (rabbit), and Alexa-647 (mouse) from Invitrogen,
Grand Island, NY. Embryo fixation, antibody staining, imaging and profile extraction were performed as described by
Dubuis et al [25]. Our goal was to predict features of pair-rule protein concentration profiles, such as the locations of
expression peaks, for which comparisons between wild-type and mutant expression levels of pair-rule genes were not
essential. Pair-rule protein profiles were measured in mutant embryos in time widows of 45- to 55-min into nuclear
cycle 14; for consistency with gap gene analyses and convenience we normalized such that the mean expression levels
for each gene in each batch of embryos ranged between 0 and 1; individual profiles were scaled as in Refs [14, 25],
which does not affect the locations of peaks and troughs in the striped profiles. As an exception, we report pair-rule
expression levels in triple maternal mutants (bed nos tsl) in wild-type units, because the pair-rule genes are expressed
uniformly and therefore lack positional features.

DATA ANALYSIS AND THEORY
4. Constructing the decoding maps

To construct decoding maps and subsequently predict pair-rule expression stripes, Eqs (3) and (4) require us to
estimate the distribution of gap gene expression levels at each position, P({g;}|x), from data. Direct sampling might
be feasible when we think about one gene, but in thinking about the full gap gene network we are trying to describe a
(joint) probability distribution in a four dimensional space, and now we certainly don’t have enough data to describe
the distribution by binning and sampling alone. Instead, we approximated the embryo-to-embryo fluctuations in
gene expression as Gaussian with mean and (co)variance that vary with position. In previous work we tested this
approximation; while we can see deviations from Gaussianity [50], the Gaussian approximation gives very accurate
estimates of the positional information carried by the expression levels of individual genes [12, 13], which is most
relevant for the decoding that we attempt here.

For a single gene, the Gaussian approximation is

1
P(glr) =~ X012, (52)

\/2mo%(x)

where x?(g, ) measures the similarity of the gene expression level to the mean, g(z), at position z,

) = LI (s8)

and o4(x) is the standard deviation in expression levels at point . Given measurements of gene expression vs position
in a large set of embryos, we can compute the mean and variance in the standard way, so that Egs (S2-S3) can be
applied directly to the data.

The generalization of the Gaussian approximation to the case where coding and decoding are based on a combination
of K genes simultaneously is given by Egs (1-2) in the main text, which depend on C(z), the covariance matrix of
fluctuations in the expression of the different genes at point z. Figure Sla,b shows the estimation of covariance matrix
elements of gap gene fluctuations across embryos,

Cij(z) = (g (z) — gi(2)) (95" (2) = Gi(2)))ar» (S4)

where (-}, denotes averaging over embryos indexed by «. Note that the covariance matrix, as well as the mean profiles
gi(x) themselves, are a function of position along the AP axis.

Figure 2 shows a step-by-step procedure for constructing a “decoding dictionary” based on a single gap gene, Kr,
from measured data, and a “decoding map” for a single wild-type embryo; the decoding map presented in main paper
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Figure 3a is an average over 38 such individual decoding maps. Similarly, top panels of Figure Slc show the profiles
of all four individual gap genes in the wild-type embryos, while the bottom panels show the corresponding decoding
maps. As with the case of Kriippel in Figure 2, all of these maps show substantial ambiguities, where the signal at
one point in the embryo is consistent with a wide range of possible positions. Ambiguity arises whenever a vertical
slice through these density plots encounters multiple peaks, but in the case of decoding based on single genes these
ambiguities are so common that they result in either vast swaths of grey or in intricate folded patterns. In particular
locations—specifically, at the flanks of mean expression profiles where the slope of the profile is high—the distributions
P(z*|x) become highly concentrated, indicating that the quantitative expression levels of individual genes provide the
ingredients for precise inferences of position, as suggested in Refs [12, 14].

Figure S1d shows that combining two genes always reduces ambiguity relative to the single gene case, but does not
eliminate it entirely, and a similar trend is observed in Figure Sle with triplets of gap genes. Once we include all
four genes (Figure 3d in the main text), ambiguity is essentially absent and the maps sharpen further. We can see
the sharpening as an increase is the probability density P(z*|z), since by normalization narrower distributions have
to have higher density at their peaks. We can quantify this sharpening by computing the standard deviation of these
distributions and then finding the median over x; a summary of these results is given in Figure S1i.

We emphasize that our decoding of positional information is based on the absolute concentrations of the gap gene
products. We have chosen units in which the maximal mean expression levels are equal to one, but there is no
normalization of the individual embryos. Further, we use the graded levels of expression explicitly in our calculations,
and one can see this even in the case of a single gene (e.g. for Kr in Figure 2), where the most precise information
is conveyed in the region where the expression level is varying. This is in contrast to a classical view of gap genes
as being expressed in “domains” whose boundaries provide the anchors for further refinement of the pattern. In
previous work we have shown that any attempt to discretize gap gene expression into on/off domains results in a
substantial loss of positional information [12], and in Figure S1f-h we show how this loss of information translates into
less precise decoding. We can define on/off domains either by thresholding simply at the midpoint of the expression
range (g = 0.5; Figure S1f), or by adjusting thresholds separately for each gap gene to optimize the decoding map
(Figure S1g). In both cases we use the optimal decoding of the discretized signals, but nonetheless there is a dramatic
loss of precision.

We further emphasize that the notion of a threshold, which is well defined for a single signal, is more ambiguous in
the case where multiple concurrent signals drive patterning, as with the gap genes. The idea of putting independent,
and possibly different, thresholds on each of the inputs separately may appear as a natural extension of the single-gene
case, but this idea already entails a drastic (and untested) independence assumption. It would be equally possible that
the relevant patterning thresholds act on some unknown, even nonlinear, combination of the four gap gene signals. In
particular, in biophysical models of enhancer function where the gene expression is controlled by the concentrations
of multiple inputs, and where the threshold is determined by the sigmoid activation function of the enhancer, the
interpretation of thresholds applying to nonlinear combinations of inputs is more realistic than the interpretation of
different thresholds independently applying to each of the inputs. Furthermore, the picture of independent thresholds
acting on individual gap genes leaves completely unanswered the question of how binarized gap gene profiles can
be read out in a biophysically realistic fashion to combinatorially drive the expression of their target genes. Thus,
graded expression levels carry more information, and it is not more “biologically plausible” to assume that only on/off
distinctions are relevant.

5. Exploring mutant embryos

We analyzed patterns of gap gene expression in six mutant lines of flies, deficient in one or two of the three maternal
inputs to the gap gene network, as summarized in Figure S2. To construct decoding maps for mutant embryos, as in
Figure 4, we first computed posterior distributions P(z|{g;}) as prescribed by Eq (3) from wild-type embryo data, and
evaluated these distributions at gap gene expression levels measured in mutant embryos. But the wild-type expression
levels fill only a very small region of the full four dimensional space of possibilities; if the expression levels in mutant
embryos fell largely outside this region, then we would be extrapolating too far from the wild-type measurements and
could not make reliable inferences. To test whether this could be the case, we computed x? [Eq (2)] between the
observed combinations of expression levels and the mean expression levels expected at each position in the wild-type,
and compared that to the x2 values for mutant embryos.

Figure S2i shows the cumulative distribution of x? across the entire population of wild-type embryos, from all six
experiments. Normalized per gene, the mean of x2 is one, but the distribution has a tail extending to nearly ten times
this value. To construct a comparable distribution for mutant embryos, we first note that the gene expression values
at one point z can be decoded to a position z’ that is very far from x. Consequently, in mutant embryos we looked
for the point 2’ in the wild-type that achieved the minimum of x% ({gi},#’) over all possible 2’ (which is the location
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that the mutant gap gene profiles decode to) and then look at the cumulative distribution of x? at these decoded
locations.

As expected, x? values in mutant embryos are larger than in the wild-type, but there is a surprising degree of
overlap between the two distributions: the largest value of x2? that we observe in the wild-type embryos is larger than
98% of the values that we see in the mutants, and Figure S2j shows that the extreme values of x? in the mutants are
confined to small regions of the embryo, rather than being widely distributed. Although mutant background induces
huge changes in the inputs of the gap gene network and in the gap gene profiles themselves, the gap gene network
responds in a way that is not so far outside the distribution of possible responses under natural conditions. This fact
is what makes decoding positional information in mutant embryos feasible.

The mutant fly lines that we analyze involve manipulation of three maternal input signals to the gap gene network,
and our discussion assumes that these are the source of positional information along the anterior—posterior axis. It
thus is an important control to delete all three of the inputs, and demonstrate the positional information is absent.
This is shown in Figure S2k, where we apply our optimal decoding to the patterns of gap gene expression that we
observe in this triple mutant fly line. The result is clear, in that the decoding map is flat—all cells have gap gene
expression levels that imply a position near the middle of the embryo. Correspondingly, pair-rule gene expression is
spatially uniform, rather than striped.

6. Predicting pair-rule stripe positions

Decoding maps make parameter—free predictions for the locations of positional markers in mutant embryos. To
test these predictions, we compare to the locations of expression peaks for the pair-rule genes. If a cell at position z
in the mutant embryo has expression levels for the gap genes that lead to a high probability of inferring a position
x* = x4, where x4 is the position of a pair-rule stripe in the wild-type, then we expect that there will be a peak in
pair-rule gene expression at the point x in the mutant. Mathematically, this process (shown graphically in Figure 4)
proceeds as follows: we construct Pg,,(z*[z) for a mutant embryo a, and look at the line 2* = x; this gives us a
(non-normalized) density p§(x) = Pg,, (2" = z5|z), and there should be pair-rule stripes at the local maxima of this
density. Because stripes in the wild-type are driven by different enhancers and are thus not identical, it is important
that our calculation should predict the occurrence of a particular identified stripe s (e.g., s could be eve stripe iv) at
T.

The construction of the density p%(z) is shown in Figure S5 for each stripe of Eve, Prd, and Run, and for each
individual wild-type embryo. There is an excellent correspondence between the average pair-rule gene expression profile
and the set of individual embryo densities for all stripes. Interestingly, we also observe that the measured width of
the pair-rule stripes s roughly matches the typical widths of the corresponding density functions, ps(x), hinting that
the decoding model may be predictive not only about pair-rule stripe locations but also about quantitative pair-rule
gene expression levels, an issue to be explored in subsequent work.

7. Predicting pair-rule stripe positions in mutant embryos

Figure 4 of the main text shows the average decoding maps for six different mutants, and the corresponding
predictions for the locations of eve stripes. Figures S3 and S4 show the same maps, but with predictions for prd and
run stripes, respectively. These average maps, Puap(2¥|2) = (Pg,,(2"|7))a, can be easily plotted as a single map, and
then decoded analogously to the procedure outlined above: we looked for the position x where the decoding map peaks
if the inferred position z* is equal to a known pair-rule stripe location, z* = x, in the wild-type. Decoding the “mean
pair-rule stripe position” in this manner does not differ from decoding single embryos to predict the pair-rule stripe
positions individually, and then taking the average prediction. But by analyzing the decoding maps from individual
embryos we can also predict fluctuations in stripe locations, a fact we used in making Figure 5.

Decoding from individual embryos predicts variability in stripe position, shape, and in the total number of observed
stripes. Figure S6a-f shows examples of individual Eve profiles where some of the stripes iii, iv, v were either missing
or had a broad, poorly localized “diffuse” profile in mutant backgrounds. These phenomena, specific to these stripes,
are predicted in the correct mutant backgrounds from the individual embryo decoding maps.

A detailed description of individual embryo pair-rule stripe predictions in mutant backgrounds, analogous to those
for the wild-type, is shown in Figure S5. In these panels, we denote separately diffuse stripes, as well as a small number
of observed-but-not-predicted and predicted-but-unobserved stripes. All non-diffuse predictions across the three pair-
rule genes and all mutants are shown in the summary Figure 5 in the main text. Figure S6g analogously shows, for
the same non-diffuse stripe predictions, a summary of observed vs predicted stripe position variability across embryos.
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8. The significance of absolute concentrations

We invested substantial experimental effort to measure gap gene expression levels in mutant embryos side-by-
side with the wild-type controls, so that absolute concentrations can contribute to the decoding. But do they? In
Figure S6h-k we show the effect of the absolute level on the decoding map, and consequently on the pair-rule stripe
prediction performance. In the bed mutant background (Figure S6h), gap gene expression levels are strongly perturbed
in shape but also suppressed in magnitude by ~2x. Decoding these profiles gives predictions of pair-rule stripes that
agree very closely with data (Figure S6i, black symbols). In contrast, when mutant profiles are individually normalized
so that they span the range of expressions between 0 and 1—in essence, keeping the profile shape but undoing the
magnitude effect—leads to much worse predictions of pair-rule stripes (Figure S6i, red).

In the tsl mutant background, the effect of absolute concentrations is more subtle. In these mutants, Kr and Kni
are overexpressed by ~ 10 — 20% relative to the wild-type, which leads to a slight deformation in the decoding map
in the posterior (z > 0.5), and this effect disappears if we normalize to keep only relative expression levels. While the
effect is smaller than in the bed background, pair-rule stripes at 0.6 < x < 0.7 are consistently predicted better using
absolute gap gene concentrations. In sum, both for large scale and precision effects on our pair-rule predictions, being
able to measure gap gene concentrations relative to the wild-type is crucial. This suggests as well that the embryo
itself responds to precisely determined, absolute concentrations of signaling molecules.

QUANTIFICATION AND STATISTICAL ANALYSIS

We imaged n = 292 wild-type embryos simultaneously stained fluorescently against the four trunk gap genes. We
imaged n = 178 wild-type embryos simultaneously stained fluorescently against three pair-rule genes. Analysis in the
40-44 min time window was performed on n = 38 wild-type embryos simultaneously stained fluorescently against the
four trunk gap genes and on n = 34 wild-type embryos simultaneously stained fluorescently against three pair-rule
genes. Analysis in the 3848 min time window was performed on n = 102 wild-type embryos simultaneously stained
fluorescently against the four trunk gap genes. The covariance matrix of fluctuations in gap gene expression levels
was computed for 7 independent wild-type datasets (n = 37,29,43, 32,29, 24, and 102 embryos). Mutant backgrounds
in the 3848 min time window were imaged on n = 40 etsl embryos, n = 20 bcd®' embryos, n = 28 osk embryos,
n = 15 bed® 0sk embryos, n = 19 Bed-only germline clone embryos, n = 31 bed™! tsl embryos, and n = 16 bed, osk, tsl
embryos.

Supplemental Movies 1 and 2

Supplemental Movie M1: Temporal progression of decoding algorithm: single decoder, Related to
Figure 6. Top panel: Dynamics of wild-type dorsal gap gene profiles (n = 292 embryos, see Ref. [25]). Each set of
profiles is an average over sliding time window of size 5 min. Center panel: Dynamics of decoding maps constructed
with single decoder from 40-44 min time window. Each map is an average over sliding time window of size 5 min.
Bottom panel: Dynamics of wild-type dorsal Eve profiles (n = 178 embryos). Each profile is an average over sliding
time window of size 5 min. Left panel: Wild-type dorsal Eve profiles (n = 34 embryos) in 40-44 min time window.

Supplemental MOVIE M2: Temporal progression of decoding algorithm: multiple decoders, Related
to Figure 6. Top panel: Dynamics of wild-type dorsal gap gene profiles (n = 292 embryos, see Ref. [25]). Each set
of profiles is an average over sliding time window of size 5 min. Center panel: Dynamics of decoding maps constructed
with a different decoder for each time point. Each map is an average over sliding time window of size 5 min. Each
decoder is constructed from the same 5 min time window as portrayed by the decoding map.

Supplemental Data: Decoding pair-rule stripe positions from gap gene expression levels, Related to STAR
Methods.



