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MOL 410/510: Biological Dynamics 
Fall 2008 

Problem Set #7 
Solutions 

 
 

1. (5’) The Gaussian distribution is described by the density function 
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Likewise, the variance of X is given by (3’) 
 

( ) ( )

( ) ( )

2
2 2

2

2

2 2
2 2 2 2 2

1 ( )var( ) ( ) exp
22

make the substitution y= ( ) / 2 ,

2 2var( ) exp 2 exp

xX x G x dx x dx

x

X y y dy y y dy

μμ μ
σσ π

μ σ

σ σσ
π π

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎛ ⎞−
= − = − −⎜ ⎟

⎝ ⎠

−

= − = −

∫ ∫

∫ ∫

 

 
To evaluate the final integral above, we can integrate by parts, using 
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Therefore, 
var(X) = σ 2.  
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2. (5’) Plugging in  
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3. (8’) 

(a) (2’) The function RtteR)t(p −= 2  has a maximum at 1/t R= , which we can 
determine by solving '( ) 0p t = . The inflection point is at 2 /t R= , which is 
calculated by solving "( ) 0p t = . The curve of function ( )p t  looks like the 
following: 
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(b) (2’) 
(c) (2’) We compute the following integrals: 
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(d) (2’) Derivation:   

 
The time interval T between an event and the second following event is the sum 
of the time intervals between the event and the first following event (say t) and 
the time interval between the first following event and the second following event 
(say t’), i.e. 'T t t= + . The probability distributions for t and t’ are given: 
 
                                             1( ) Re ,           0Rtp t t−= >  
 
For a Poisson process every event is independent. Thus for a Poisson process, t 
and t’ are independent random variables and therefore T is the sum of two 
independent random variables. Thus we can find the probability distribution 

( )p T  for the time interval between an event and the second following event in a 
Poisson process by using the convolution integral. Since t must lie between the 
event and T, the limits of integration for t are from 0 to T.     
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4. (8’) This project is to examine the Lorenz equations. 

 
(a) (1’) Δ = 0.05 is too large. Choose a small enough Δ for your simulation (not 

larger than 0.01 is OK).  Here we use Δ = 0.005. 
(b)  (2’) Below is seen a trajectory on the attractor. The initial condition is x = 4.9022, 

y = 5.7704, z = 21.1268, which is found by integrating for t = 30:  
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(c) (2’) Below we see two traces of y vs t for a trajectory on the attractor. The initial 

conditions are: 
 

x = 4.9022,  y = 5.7704,  z = 21.1268  (blue) 
x = 4.9021,  y = 5.7704,  z = 21.1268  (red) 
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We see that the two values diverge at around t = 13, even though the initial 
conditions differ by only 0.0001 in one coordinate. This is an example of 
“sensitive dependence on initial conditions”, popularly known as the “butterfly 
effect.” The closer the trajectories start out, the longer it takes for them to diverge. 
   

 
 

(d) (3’) The Lyapunov exponent for a strange attractor measures the average rate at 
which two nearby trajectories exponentially diverge. It is found according to the 
equation,   

te|)(||)t(| λδ≈δ 0  
 

where δ(t) is the Euclidean distance between the two trajectories at time t.  Taking 
the natural logarithm of both sides of the above equation yields 
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Thus by plotting the logarithm of the separation between the two trajectories, we 
expect to get a line with slope λ.  Eventually the separation saturates when it 
reaches the size of the attractor, i.e. since the trajectories are both confined to the 
attractor, their separation cannot increase beyond the size of the attractor. 
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From the plot, we estimate the Lyaponov exponent to be λ = 0.95.   
 
clear all; 
a = 10; 
b = 28; 
c = (8/3); 
maxtime = 30; 
dt = 0.005; 
nsteps = maxtime/dt; 
t(1) = 0; 
epsilon = 0.0001; 
%x = 1; 
%y = 1; 
%z = 1; 
%for i = 1:nsteps     % Get onto the attractor 
%    x = (a*(y - x))*dt + x; 
%    y = (x*(b - z)-y)*dt + y; 
%    z = (x*y - c*z)*dt + z; 
%end 
x1(1) = 4.9022; 
y1(1) = 5.7704; 
z1(1) = 21.1268; 
x2(1)= x1(1) % + epsilon; 
y2(1)= y1(1) + epsilon 
z2(1)= z1(1) % + epsilon; 
d(1) = sqrt((x1(1)-x2(1))^2+(y1(1)-y2(1))^2+(z1(1)-z2(1))^2); 
for i = 1:nsteps 
    t(i+1) = dt*i; 
    x1(i+1) =(a*(y1(i) - x1(i)))*dt + x1(i); 
    y1(i+1) = (x1(i)*(b - z1(i))-y1(i))*dt + y1(i); 
    z1(i+1) = (x1(i)*y1(i) - c*z1(i))*dt + z1(i); 
    x2(i+1) = (a*(y2(i) - x2(i)))*dt + x2(i); 
    y2(i+1) = (x2(i)*(b - z2(i)) - y2(i))*dt + y2(i); 
    z2(i+1) = (x2(i)*y2(i) - c*z2(i))*dt + z2(i); 
    d(i+1) = sqrt((x1(i)-x2(i))^2+(y1(i)-y2(i))^2+(z1(i)-z2(i))^2); 
end 
plot (t,log(d/d(1))) 


