
MOL 410/510: Biological Dynamics
Fall 2008

Problem Set #6
Solutions

1. Mutual inhibition (12’)

We determine the number and type of fixed points by plotting the nullclines
and vector field for the system, as shown in Figure 1 (2’). For β = 0.5, there
is a single stable fixed point at (1/2, 1/2) (2’). For β > 1, there are three fixed
points: an unstable fixed point at (1/2, 1/2) and two stable fixed points that
approach (0, 1) and (1, 0) (4’). These two stable steady states represents one
neuron fully active and the other neuron completely turned off.

To prove this solidly, the fixed points are solutions to equations:

x1 = f(x2) =
1

1 + e4β(x2−0.5)
(1)

x2 = f(x1) =
1

1 + e4β(x1−0.5)
. (2)

.

Thus we need to solve:

1

1 + e
4β( 1

1+e4β(x1−0.5)
−0.5)

− x1 = 0. (3)

There is no analytical solution to Equation (3). Alternatively, we can solve
it numerically in Matlab. One method is to use fsolve or fzero. To call this
function, we have to start from some initial value as a guess for the root. From
Figure 1, we can easily tell that the roots are around 0, 0.5, and 1.

b = 2;
z1 = fzero(@(x)1/(1+exp(4*b*(1/(1+exp(4*b*(x−0.5)))−0.5)))−x,0);
z2 = fzero(@(x)1/(1+exp(4*b*(1/(1+exp(4*b*(x−0.5)))−0.5)))−x,0.5);
z3 = fzero(@(x)1/(1+exp(4*b*(1/(1+exp(4*b*(x−0.5)))−0.5)))−x,1);

The Jacobian is:

J =


 −1 −4β

[1+e4β(x2−0.5)][1+e−4β(x2−0.5)]
−4β

[1+e4β(x1−0.5)][1+e−4β(x1−0.5)]
−1


 (4)

It can be proved that 1− f(x) = f(1− x) (try to prove this by yourself!), so
that we can easily get x1 + x2 = 1 and

−4β

[1 + e4β(x2−0.5)][1 + e−4β(x2−0.5)]
=

−4β

[1 + e4β(x1−0.5)][1 + e−4β(x1−0.5)]
, (5)
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which we rewrite as B.

Accordingly, the eigenvalues are

λ1,2 = −1± |B|. (6)

For fixed point (0.5, 0.5), B = −β. When |β| < 1, the two eigenvalues are
both negative and this fixed point is stable. When |β| > 1, one eigenvalue is
positive and the fixed point is a saddle.

For the other two fixed points (if they exist), we can prove that |B| < 1
regardless of β and x values (try to prove this by yourself!). So the other two
fixed points are always stable as long as they exist.

The bifurcation diagram for this system as a function of β is shown in Figure 2
(1’). From the diagram, it is clear that this is a pitchfork bifurcation.
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Figure 1: Vector field plots for two mutually inhibiting neurons for different values
of β. The x1 and x2 nullclines are in red and green, respectively.

When we give these two neurons different stimuli k1 and k2, we find that (for
β > 1) we go from having two stable states to having just one stable state
(1’), as shown in Figure 3. This single stable steady state corresponds to the
neuron receiving the larger stimulus being fully active and the neuron receiving
the smaller stimulus being completely inactive (1’). Thus, whichever neuron
receives the larger stimulus always “wins” by becoming maximally active,
while fully repressing the other neuron. In this way a group of mutually
inhibiting neurons behave as a “winner-take-all” network (1’).
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Figure 2: Bifurcation diagram for two mutually inhibiting neurons as a function of
β.

2. Fitzhugh-Nagumo (8’)

� The fixed points are where dv/dt = 0 and dw/dt = 0. The second
equation gives us v = γw. Substituting into the first, we have (1’)

v(v − a)(v − 1) + v/γ − I = 0. (7)

An example of a Matlab code that finds the fixed point and plots the real
part of the eigenvalues as a function of the input is shown below. We used
the values for the parameters as given in the text. First we define the
functions f and g. Then we find the fixed point by solving Equation (7)
(1’). The a cubic equations, we can find three roots. But only the real
one makes sense (membrane potential v and recovery variable w cannot
be complex numbers). Thus we picked the first root and discard the
other two. Next we find the Jacobian matrix at the fixed point, and then
find the eigenvalues of the matrix (2’). The graph of the real part of
the eigenvalues shown in Figure 4 indicates that the real part becomes
positive at I = 0.03507 (1’), which is the value at which the fixed point
becomes unstable.

syms I v w
a = 0.139; eps = 0.008; gamma = 2.54;
f = I − v *(v−a)*(v−1) − w;
g = eps * (v − gamma * w);
h = v*(v−a)*(v−1) + v/gamma − I;
fp = solve( h );
J = [diff(f,v), diff(f,w); diff(g,v), diff(g,w)];
Jac = subs(J,v,fp(1));
E = eig(Jac);
figure,
ezplot(real(E(1)),[0, 0.1])
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Figure 3: Vector field plots for two mutually inhibiting neurons for different stimuls
strengths k1 and k2. On the left neuron 2 receives the larger stimulus and on the
right, neuron 1 receives the larger stimulus. The x1 and x2 nullclines are in red and
green, respectively.

hold on
ezplot(real(E(2)),[0, 0.1])

� Graphs of the trajectory and membrane potential v as a function of time
t are shown in Figure 5 (2’). In this case, we turned I on at t = 10, and
off at t = 20. If I is kept on all the time, there will be a limit cycle (1’).
Instead of single potential pulse, v is going to oscilate.

A Matlab code for plotting the graphs is as following:

function trajectory()
% Show the trajectory for current I
I = 0.1;
a = 0.139; eps = 0.008; g = 2.54;
time = 200; % time to run to
t1 = 10; % time to turn on
t2 = 20; % time to turn off

x0 = [0 0];
[T x] = ode45(@(t,x) myfun(t,x,I,a,eps,g,t1,t2), [0 time], x0);

figure, plot(x(:,1),x(:,2));
figure, plot(T, x(:,1));

function y = myfun(t, x, I, a, eps, g, t1, t2)
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Figure 4: The real part of the eigenvalues of the linearized dynamics at the fixed
point versus the current I injected into the axon.

Figure 5: Left: The trajectory (blue) on top of the vector field (pink). Red and
green are v-nullcline and w-nullcline respectively. Right: Membrane potential v as
a function of time t. Injected current I is kept on only from t = 10 to t = 20.
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y = [ I*(t>t1)*(t<t2) − x(1)*(x(1)−a)*(x(1)−1) − x(2);
eps*(x(1) − g*x(2))];

end

end
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