MOL410/510 Problem Set 1 Solutions - Linear Algebra

1. Matrix mutliplication.

$$
\begin{aligned}
& \text { - } C=A B=\left(\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right)\left(\begin{array}{ll}
6 & 5 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 \cdot 6+3 \cdot 3 & 1 \cdot 5+3 \cdot 2 \\
4 \cdot 6+2 \cdot 3 & 4 \cdot 5+2 \cdot 2
\end{array}\right)=\left(\begin{array}{ll}
15 & 11 \\
30 & 24
\end{array}\right) \\
& \text { - } D=B A=\left(\begin{array}{ll}
6 & 5 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right)=\left(\begin{array}{ll}
6 \cdot 1+5 \cdot 4 & 6 \cdot 3+5 \cdot 2 \\
3 \cdot 1+2 \cdot 4 & 3 \cdot 3+2 \cdot 2
\end{array}\right)=\left(\begin{array}{ll}
26 & 28 \\
11 & 13
\end{array}\right)
\end{aligned}
$$

2. Matrix mutliplication.

- $C=A B=\left(\begin{array}{ll}2 & 1 \\ 4 & 3 \\ 3 & 1\end{array}\right)\left(\begin{array}{ll}6 & 5 \\ 3 & 2\end{array}\right)=\left(\begin{array}{cc}2 \cdot 6+1 \cdot 3 & 2 \cdot 5+1 \cdot 2 \\ 4 \cdot 6+3 \cdot 3 & 4 \cdot 5+3 \cdot 2 \\ 3 \cdot 6+1 \cdot 3 & 3 \cdot 5+1 \cdot 2\end{array}\right)=\left(\begin{array}{cc}15 & 12 \\ 33 & 26 \\ 21 & 17\end{array}\right)$
- $B A$ does not exist.

3. Matrix mutliplication.

- $C=A B=\left(\begin{array}{ccc}3 & -3 & 2 \\ 1 & 5 & -1 \\ -4 & -6 & 2\end{array}\right)\left(\begin{array}{l}8 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{c}3 \cdot 8-3 \cdot 1+2 \cdot 4 \\ 1 \cdot 8+5 \cdot 1-1 \cdot 4 \\ -4 \cdot 8-6 \cdot 1+2 \cdot 4\end{array}\right)=\left(\begin{array}{c}29 \\ 9 \\ -30\end{array}\right)$
- $D=B^{\mathrm{T}} A^{\mathrm{T}}=\left(\begin{array}{lll}8 & 1 & 4\end{array}\right)\left(\begin{array}{ccc}3 & 1 & -4 \\ -3 & 5 & -6 \\ 2 & -1 & 2\end{array}\right)=\left(\begin{array}{ccc}29 & 9 & -30\end{array}\right)$
D is the transpose of C.

4. Dot Product.

- $\mathbf{x}^{\mathrm{T}} \cdot \mathbf{y}=1 \cdot 0+3 \cdot 2=6$
- When $\theta=30^{\circ}, R=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$. Therefore,

$$
\mathbf{x}^{\prime}=R \mathbf{x}=\binom{\frac{\sqrt{3}}{2} \cdot 1+\frac{1}{2} \cdot 3}{-\frac{1}{2} \cdot 1+\frac{\sqrt{3}}{2} \cdot 3}=\binom{\frac{\sqrt{3}}{2} \cdot(1+\sqrt{3})}{\frac{1}{2} \cdot(3 \sqrt{3}-1)}
$$

$$
\begin{aligned}
& \mathbf{y}^{\prime}=R \mathbf{y}=\binom{\frac{\sqrt{3}}{2} \cdot 0+\frac{1}{2} \cdot 2}{-\frac{1}{2} \cdot 0+\frac{\sqrt{3}}{2} \cdot 2}=\binom{1}{\sqrt{3}} \\
& \mathbf{x}^{\prime \mathrm{T}} \cdot \mathbf{y}^{\prime}=\frac{\sqrt{3}}{2} \cdot(1+\sqrt{3}) \cdot 1+\frac{1}{2} \cdot(3 \sqrt{3}-1) \sqrt{3}=6, \text { the same value before the rotation. }
\end{aligned}
$$

- For any $\theta, \mathbf{x}^{\prime}=\binom{\cos \theta+3 \sin \theta}{-\sin \theta+3 \cos \theta}$ and $\mathbf{y}^{\prime}=\binom{2 \sin \theta}{2 \cos \theta}$.

Therefore, $\mathbf{x}^{\prime T} \cdot \mathbf{y}^{\prime}=2 \cos \theta \sin \theta+6 \sin ^{2} \theta-2 \cos \theta \sin \theta+6 \cos ^{2} \theta=6$.

5. Dot product and a non-orthonormal base transform.

- To find the representation of a vector in a new basis direction, we first write the basis in terms of the old basis, with each basis written as a column in a matrix (see solution to problem 10).

$$
B=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 1
\end{array}\right)
$$

Then to find how a matrix in the old basis is written in the new basis, find the inverse of B.

$$
B^{-1}=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
-1 & 1
\end{array}\right)
$$

and multiply it onto the vectors in the old basis, i.e. $\mathbf{x}^{\prime \mathrm{T}}=B^{-1} \mathbf{x}$ and $\mathbf{y}^{\prime \mathrm{T}}=B^{-1} \mathbf{y}$.
Therefore, $\mathrm{x}^{\prime \mathrm{T}}=\left(\begin{array}{ll}\sqrt{2} & 2\end{array}\right)$ and $\mathrm{y}^{\prime \mathrm{T}}=\left(\begin{array}{ll}0 & 2\end{array}\right)$.

- $\mathrm{x}^{\mathrm{T}} \cdot \mathrm{y}^{\prime}=4$. The dot product is not conserved because the new basis is not orthogonal. However, the vectors did not change at all, we only wrote them in a new basis. Therefore, the overlap between the two vectors did not change, i.e. it still equals 6 . The dot product and the overlap between the two vectors are only the same in orthonormal basis changes.

6. Matrix Multiplication. • Let's say there are N time points, then:

$$
\mathbf{s}=L \mathbf{v}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
1 & \ldots & 1 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{1}+v_{2} \\
\vdots \\
\sum_{i=1}^{N} v_{i}
\end{array}\right)
$$

7. Matrix Multiplication.

- $M \Lambda=\left(\begin{array}{ccc}a 1 & b 1 & c 1 \\ a 2 & b 2 & c 2 \\ a 3 & b 3 & c 3\end{array}\right)\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)=\left(\begin{array}{ccc}a 1 \cdot \lambda_{1} & b 1 \cdot \lambda_{2} & c 1 \cdot \lambda_{3} \\ a 2 \cdot \lambda_{1} & b 2 \cdot \lambda_{2} & c 2 \cdot \lambda_{3} \\ a 3 \cdot \lambda_{1} & b 3 \cdot \lambda_{2} & c 3 \cdot \lambda_{3}\end{array}\right)$

Each column is the $i^{\text {th }}$ column of M multiplied by λ_{i}.

- Let's first examine

$$
M \mathbf{v}_{\mathbf{i}}=\left(\begin{array}{c}
\sum_{j=1}^{N} M_{1 j} v_{i j} \tag{1}\\
\sum_{j=1}^{N} M_{2 j} v_{i j} \\
\vdots \\
\sum_{j=1}^{N} M_{N j} v_{i j}
\end{array}\right)=\lambda_{i}\left(\begin{array}{c}
v_{i 1} \\
v_{i 2} \\
\vdots \\
v_{i N}
\end{array}\right) \equiv \lambda_{i}\left(\begin{array}{c}
\mid \\
\mathbf{v}_{\mathbf{i}} \\
\mid
\end{array}\right)
$$

where $v_{i j}$ is the $j^{\text {th }}$ element of vector $\mathbf{v}_{\mathbf{i}}$ and $M_{i j}$ is the $i^{\text {th }}$ row and $j^{\text {th }}$ column of M. Now, let's calculate

$$
M V=\left(\begin{array}{cccc}
\sum_{i=1}^{N} M_{1 i} v_{1 i} & \sum_{i=1}^{N} M_{1 i} v_{2 i} & \ldots & \sum_{i=1}^{N} M_{1 i} v_{N i} \tag{2}\\
\sum_{i=1}^{N} M_{2 i} v_{1 i} & \sum_{i=1}^{N} M_{2 i} v_{2 i} & \ldots & \sum_{i=1}^{N} M_{2 i} v_{N i} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{N} M_{N i} v_{1 i} & \sum_{i=1}^{N} M_{N i} v_{2 i} & \ldots & \sum_{i=1}^{N} M_{N i} v_{N i}
\end{array}\right)
$$

Using the result from the previous portion of the problem, we can write

$$
V \Lambda=\left(\begin{array}{ccc}
\mid & \mid & \mid \tag{3}\\
\lambda_{1} \mathbf{v}_{\mathbf{1}} & \ldots & \lambda_{N} \mathbf{v}_{\mathbf{N}} \\
\mid & \mid & \mid
\end{array}\right)
$$

Setting $M V=V \Lambda$, we see that each column of eqns. (2) and (3) satisfy eqn. (1).

8. Inverses and matrix multiplication.

- $A A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{ll}a d-b c & -a b+b a \\ c d-d c & -c b+d a\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- The inverse does not exist when $a d=b c$.
- Two vectors are parallel if they can be written as scalar multiples of one another. That is, if \mathbf{u} is parallel to \mathbf{v}, then $\mathbf{u}=\alpha \mathbf{v}$, where $\alpha \neq 0$ is a scalar. If our vectors are $\binom{a}{c}$ and $\binom{b}{d}$, and $a d=b c$, then we can rewrite the two vectors as $\binom{a}{a d / b}=a\binom{1}{d / b}$ and $\binom{b}{b c / a}=b\binom{1}{c / a}$, but $d / b=c / a$ so that both vectors are scalar multiples of one another and are therefore parallel. A similar argument holds for the row vectors.

9. Inverses.

- Left multiply $(A B)^{-1}=B^{-1} A^{-1}$ on each side with $(A B)$, then $(A B)(A B)^{-1}=I$ and $(A B) B^{-1} A^{-1}=A B B^{-1} A^{-1}=A I A^{-1}=A A^{-1}=I$.

10. Changing bases. Let's expand the equation:

$$
\mathbf{x}=\mathbf{b}_{\mathbf{1}} y_{1}+\mathbf{b}_{\mathbf{2}} y_{2}+\mathbf{b}_{\mathbf{3}} y_{3}=\left(\begin{array}{c}
b_{11} y_{1}+b_{21} y_{2}+b_{31} y_{3} \tag{4}\\
b_{12} y_{1}+b_{22} y_{2}+b_{32} y_{3} \\
b_{13} y_{1}+b_{23} y_{2}+b_{33} y_{3}
\end{array}\right)
$$

where $b_{i j}$ is the $j^{\text {th }}$ element of vector $\mathbf{b}_{\mathbf{i}}$. Equation (4) is equivalent to

$$
\mathbf{x}=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \mathbf{b}_{\mathbf{3}} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \equiv B \mathbf{y}
$$

Therefore, $\mathbf{y}=B^{-1} \mathbf{x}$.

11. Solving linear equations.

- The equations can be rewritten in matrix form as

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{20}{4}
$$

The inverse of the 2×2 matrix is:

$$
\frac{1}{5}\left(\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right)
$$

Therefore, x and y is given by:

$$
\binom{x}{y}=\frac{1}{5}\left(\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right)\binom{20}{4}=\binom{6.4}{2.4}
$$

12. Solving linear equations.

- The equations are identical to the ones from Problem 11, just replace x with e_{1} and y with e_{2}. Therefore $e_{1}=6.4$ and $e_{2}=2.4$.

13. Index notation.

- Let's write

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 N} \\
A_{21} & A_{22} & \ldots & A_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
A_{N 1} & A_{N 2} & \ldots & A_{N N}
\end{array}\right), B=\left(\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 N} \\
B_{21} & B_{22} & \ldots & B_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
B_{N 1} & B_{N 2} & \ldots & B_{N N}
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{cccc}
\sum_{i} A_{1 i} B_{i 1} & \sum_{i} A_{1 i} B_{i 2} & \ldots & \sum_{i} A_{1 i} B_{i N} \\
\sum_{i} A_{2 i} B_{i 1} & \sum_{i} A_{2 i} B_{i 2} & \ldots & \sum_{i} A_{2 i} B_{i N} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} A_{N i} B_{i 1} & \sum_{i} A_{N i} B_{i 2} & \cdots & \sum_{i} A_{N i} B_{i N}
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{cccc}
\sum_{i} B_{1 i} A_{i 1} & \sum_{i} B_{1 i} A_{i 2} & \cdots & \sum_{i} B_{1 i} A_{i N} \\
\sum_{i} B_{2 i} A_{i 1} & \sum_{i} B_{2 i} A_{i 2} & \cdots & \sum_{i} B_{2 i} A_{i N} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} B_{N i} A_{i 1} & \sum_{i} B_{N i} A_{i 2} & \cdots & \sum_{i} B_{N i} A_{i N}
\end{array}\right)
$$

The trace is the sum along the diagonal elements of a matrix. Therefore $\operatorname{Tr}(A B)=\sum_{j} \sum_{i} A_{j i} B_{i j}$ and $\operatorname{Tr}(B A)=\sum_{j} \sum_{i} B_{j i} A_{i j}$, and the two are equivalent.

- Take the trace of both sides of the equation, $\operatorname{Tr}(M)=\operatorname{Tr}\left(V D V^{-1}\right)$. The generalization of the rule you learned in the previous part is that $\operatorname{Tr}(A B C \ldots Z)=\operatorname{Tr}(B C . . Z A)=$ $\operatorname{Tr}(C . . Z A B)=\ldots$ Therefore we can write $\operatorname{Tr}(M)=\operatorname{Tr}\left(V D V^{-1}\right)=\operatorname{Tr}\left(D V^{-1} V\right)=$ $\operatorname{Tr}(D I)=\operatorname{Tr}(D)$.
- This is easiest to see if the equation is rewritten as $M V=V D$. The rule for determinants is $\operatorname{det}(A B \ldots Z)=\operatorname{det}(A) \operatorname{det}(B) \ldots \operatorname{det}(Z)$. Therefore, taking the determinant: $\operatorname{det}(M V)=$ $\operatorname{det}(V D)=\operatorname{det}(M) \operatorname{det}(V)=\operatorname{det}(V) \operatorname{det}(D)$, hence $\operatorname{det}(A)=\operatorname{det}(D)$.

14. Rotation Matrices.

- The dot product of the two rows is $-\cos \theta \sin \theta+\sin \theta \cos \theta=0$.
- The dot product of the two columns is $\cos \theta \sin \theta-\sin \theta \cos \theta=0$.
-

$$
\begin{aligned}
R^{\mathrm{T}} R & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

- $\mathbf{x}^{\prime}=R \mathbf{x}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x}{y}=\binom{x \cos \theta+y \sin \theta}{-x \sin \theta+y \cos \theta}$

The length of x^{\prime} is

$$
\begin{aligned}
\left|\mathbf{x}^{\prime}\right| & =x^{\prime 2}+y^{\prime 2}=(x \cos \theta+y \sin \theta)^{2}+(-x \sin \theta+y \cos \theta)^{2} \\
& =x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta+2 x y \cos \theta \sin \theta+x^{2} \sin ^{2} \theta+y^{2} \cos ^{2} \theta-2 x y \cos \theta \sin \theta \\
& =x^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+y^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x^{2}+y^{2}=|\mathbf{x}|
\end{aligned}
$$

15. Eigenvalues and eigenvectors

- $A \mathbf{x}=\left(\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right)\binom{2}{1}=\binom{6}{3}=3\binom{2}{1}$. The eigenvalue is 3 .
- To find the eigenvalues, we need to solve the characteristic equation

$$
|A-\lambda I|=\left|\begin{array}{cc}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right|=(4-\lambda)(1-\lambda)+2=0
$$

Since we know that $\lambda=3$ is one of the eigenvalues, we can write this as $(\lambda-3)(\lambda-2)=0$ (alternatively, we can just solve for the quadratic equation). Therefore, the second eigenvalue is 2 . To get the eigenvectors, we need to find the values x and y that satisfy

$$
\left(\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right)\binom{x}{y}=2\binom{x}{y}
$$

Let's rewrite this as

$$
\binom{4 x-2 y}{x+y}-2\binom{x}{y}=\binom{2 x-2 y}{x-y}=\binom{0}{0}
$$

Looking at either the top or bottom row shows that any vector where $x=y$ will be an eigenvector. Let's just use the value $(11)^{\mathrm{T}}$. Then

$$
\left(\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{2}=2\binom{1}{1}
$$

Therefore, ($\left.\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}$ is indeed an eigenvector with eigenvalue 2 .

16. Eigenvalues and eigenvectors

- The characteristic equation is

$$
\left|\begin{array}{cc}
3-\lambda & 2 \\
3 & -2-\lambda
\end{array}\right|=(3-\lambda)(-2-\lambda)-6=(\lambda-4)(\lambda+3)=0
$$

Therefore, the two eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=-3$. To get the eigenvectors, we note

$$
\left(\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right)\binom{x_{1}}{y_{1}}=4\binom{x_{1}}{y_{1}} \text { and }\left(\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right)\binom{x_{2}}{y_{2}}=-3\binom{x_{2}}{y_{2}}
$$

Working through the multiplication and subtracting right hand sides from left hand sides:

$$
\binom{-x_{1}+2 y_{1}}{3 x_{1}-6 y_{1}}=\binom{0}{0} \text { and }\binom{6 x_{2}+2 y_{2}}{3 x_{2}+y_{2}}=\binom{0}{0}
$$

Therefore, vectors satisfying the conditions $x_{1}=2 y_{1}$ and $3 x_{2}=-y_{2}$ are eigenvectors, e.g. the vectors $\binom{2}{1}$ and $\binom{1}{-3}$ are eigenvectors, with eigenvalues 4 and -3 respectively.

- The characteristic equation is $\lambda^{2}-2 \lambda+5=0$ whose solutions are $\lambda_{ \pm}=1 \pm 2 i$ and whose eigenvectors satisfy $y_{+}=i x_{+}$and $y_{-}=-i x_{-}$.
- You can define the matrix in Matlab using $\mathrm{M}=\left[\begin{array}{lllllll}2 & -3 & 1 ; & 1 & -2 & 1 ; & 1\end{array}-32\right]$; and obtain the eigenvalues and eigenvectors by calling $[V \mathrm{D}]=\mathrm{eig}(\mathrm{M})$, where the columns of V are the eigenvectors and D is a diagonal matrix of eigenvalues. This should return

$$
V=\left(\begin{array}{ccc}
0.8165 & -0.5774 & -0.6786 \\
0.4082 & -0.5774 & 0.0186 \\
0.4082 & -0.5774 & 0.7343
\end{array}\right) \text { and } D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- The trace of a matrix M is given by $\sum_{i} M_{i i}$, which is equal to 1 for the first matrix, 2 for the second matrix, and 2 for the third matrix. In all three cases, the trace is equal to the sum of the eigenvalues. For the 2×2 matrices, the determinants are $-2 \cdot 3-2 \cdot 3=-12$ and $1 \cdot 1+2 \cdot 2=5$, both of which are equal to their respective products of eigenvectors. The 3×3 matrix can be performed by hand using Laplace development, but its much simpler in Matlab to call $\operatorname{det}(\mathrm{M})$ which returns the value 0 .

17. Eigenvectors of symmetric matrices. My apologies, because this problem is actually more difficult than I intended, and I realized after the tutorial that my method only shows that $V^{\mathrm{T}} V$ commutes with D. There is also one crucial piece of information that I neglected which makes this problem more manageable: assume the eigenvectors are distinct.

Now imagine that the vectors $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are both eigenvectors of the matrix A with distinct eigenvalues λ_{1} and λ_{2} respectively. If the dot product between $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is zero, then the two are orthogonal. Since, $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are eigenvectors, $A \mathbf{v}_{\mathbf{1}}=\lambda_{1} \mathbf{v}_{\mathbf{1}}$ and $A \mathbf{v}_{\mathbf{2}}=\lambda_{2} \mathbf{v}_{\mathbf{2}}$. That means that the dot product between $A \mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is also equal to zero if both eigenvectors are parallel. Let's calculate the dot product between $A \mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$:

$$
\lambda_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{2}}=\left(\mathbf{v}_{\mathbf{1}}^{\mathrm{T}} A^{\mathrm{T}}\right) \mathbf{v}_{\mathbf{2}}=\left(\mathbf{v}_{\mathbf{1}}^{\mathrm{T}} A\right) \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}^{\mathrm{T}}\left(A \mathbf{v}_{\mathbf{2}}\right)=\lambda_{2} \mathbf{v}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{2}},
$$

where we have replaced A for A^{T} since A is symmetric. Therefore, $\lambda_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{2}}=\lambda_{2} \mathbf{v}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{2}}$ and because we stipulated that $\lambda_{1} \neq \lambda_{2}$, the condition can only be met if $\mathbf{v}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{2}}=0$. Therefore, we have shown that any two eigenvectors with distinct eigenvalues, will be perpendicular. Now, if we choose eigenvectors that are normalized, i.e. $\mathbf{v}_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{v}_{\mathbf{i}}=1$, then we have proved that $V^{\mathrm{T}} V=I$ for symmetric matrices A where the eigenvectors are distinct.
18. Eigenvectors of symmetric matrices. Define the matrix in Matlab: $\mathrm{A}=\left[\begin{array}{ll}9 & 3 \\ 6 & 3 \\ 7 & 4 ; 6\end{array}\right.$ 4 3]; and get the eigenvectors $[\mathrm{V} \mathrm{D}]=\operatorname{eig}(\mathrm{M})$. The eigenvectors are in the columns of V . Calculate the dot product between any two eigenvectors using $\mathrm{V}(:, \mathrm{m})^{\prime *} \mathrm{~V}(:, \mathrm{n})$ which will yield 0 when $\mathrm{n} \neq \mathrm{m}$ and 1 when $\mathrm{n}=\mathrm{m}$.

