
MOL410/510 Problem Set 1 Solutions - Linear Algebra

1. Matrix mutliplication.

• C = AB =

(
1 3
4 2

)(
6 5
3 2

)
=

(
1 · 6 + 3 · 3 1 · 5 + 3 · 2
4 · 6 + 2 · 3 4 · 5 + 2 · 2

)
=

(
15 11
30 24

)

• D = BA =

(
6 5
3 2

)(
1 3
4 2

)
=

(
6 · 1 + 5 · 4 6 · 3 + 5 · 2
3 · 1 + 2 · 4 3 · 3 + 2 · 2

)
=

(
26 28
11 13

)
2. Matrix mutliplication.

• C = AB =

 2 1
4 3
3 1

( 6 5
3 2

)
=

 2 · 6 + 1 · 3 2 · 5 + 1 · 2
4 · 6 + 3 · 3 4 · 5 + 3 · 2
3 · 6 + 1 · 3 3 · 5 + 1 · 2

 =

 15 12
33 26
21 17


• BA does not exist.

3. Matrix mutliplication.

• C = AB =

 3 −3 2
1 5 −1
−4 −6 2

 8
1
4

 =

 3 · 8− 3 · 1 + 2 · 4
1 · 8 + 5 · 1− 1 · 4
−4 · 8− 6 · 1 + 2 · 4

 =

 29
9
−30



• D = BTAT =
(

8 1 4
) 3 1 −4
−3 5 −6
2 −1 2

 =
(

29 9 −30
)

D is the transpose of C.

4. Dot Product.

• xT · y = 1 · 0 + 3 · 2 = 6

• When θ = 30◦, R =


√
3
2

1
2

−1
2

√
3
2

. Therefore,

x′ = Rx =


√
3
2 · 1 + 1

2 · 3

−1
2 · 1 +

√
3
2 · 3

 =


√
3
2 · (1 +

√
3)

1
2 · (3

√
3− 1)


1



y′ = Ry =


√
3
2 · 0 + 1

2 · 2

−1
2 · 0 +

√
3
2 · 2

 =

 1

√
3


x′T ·y′ =

√
3
2 · (1 +

√
3) · 1 + 1

2 · (3
√

3− 1)
√

3 = 6, the same value before the rotation.

• For any θ, x′ =
(

cos θ + 3 sin θ
− sin θ + 3 cos θ

)
and y′ =

(
2 sin θ
2 cos θ

)
.

Therefore, x′T · y′ = 2 cos θ sin θ + 6 sin2 θ − 2 cos θ sin θ + 6 cos2 θ = 6.

5. Dot product and a non-orthonormal base transform.

• To find the representation of a vector in a new basis direction, we first write the basis
in terms of the old basis, with each basis written as a column in a matrix (see solution to
problem 10).

B =


1√
2

0

1√
2

1


Then to find how a matrix in the old basis is written in the new basis, find the inverse of B.

B−1 =

 √2 0

−1 1


and multiply it onto the vectors in the old basis, i.e. x′T = B−1x and y′T = B−1y.

Therefore, x′T =
( √

2 2
)

and y′T =
(

0 2
)
.

• x′T · y′ = 4. The dot product is not conserved because the new basis is not orthogonal.
However, the vectors did not change at all, we only wrote them in a new basis. Therefore,
the overlap between the two vectors did not change, i.e. it still equals 6. The dot product and
the overlap between the two vectors are only the same in orthonormal basis changes.

6. Matrix Multiplication. • Let’s say there are N time points, then:

s = Lv =


1 0 ... 0

1 1
. . .

...
...

. . . . . . 0
1 ... 1 1




v1
v2
...
vN

 =


v1

v1 + v2
...

N∑
i=1

vi


2



7. Matrix Multiplication.

•MΛ =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 a1 · λ1 b1 · λ2 c1 · λ3
a2 · λ1 b2 · λ2 c2 · λ3
a3 · λ1 b3 · λ2 c3 · λ3


Each column is the ith column of M multiplied by λi.

• Let’s first examine

Mvi =



N∑
j=1

M1jvij

N∑
j=1

M2jvij

...
N∑
j=1

MNjvij


= λi


vi1
vi2
...
viN

 ≡ λi
 |

vi

|

 (1)

where vij is the jth element of vector vi and Mij is the ith row and jth column of M .

Now, let’s calculate

MV =



N∑
i=1

M1iv1i
N∑
i=1

M1iv2i ...
N∑
i=1

M1ivNi

N∑
i=1

M2iv1i
N∑
i=1

M2iv2i ...
N∑
i=1

M2ivNi

...
...

. . .
...

N∑
i=1

MNiv1i
N∑
i=1

MNiv2i ...
N∑
i=1

MNivNi


(2)

Using the result from the previous portion of the problem, we can write

V Λ =

 | | |
λ1v1 ... λNvN

| | |

 (3)

Setting MV = V Λ, we see that each column of eqns. (2) and (3) satisfy eqn. (1).
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8. Inverses and matrix multiplication.

• AA−1 = 1
ad−bc

(
a b
c d

)(
d −b
−c a

)
= 1

ad−bc

(
ad− bc −ab+ ba
cd− dc −cb+ da

)
=

(
1 0
0 1

)
• The inverse does not exist when ad = bc.

• Two vectors are parallel if they can be written as scalar multiples of one another. That is,

if u is parallel to v, then u = αv, where α 6= 0 is a scalar. If our vectors are
(
a
c

)
and(

b
d

)
, and ad = bc, then we can rewrite the two vectors as

(
a

ad/b

)
= a

(
1
d/b

)
and(

b
bc/a

)
= b

(
1
c/a

)
, but d/b = c/a so that both vectors are scalar multiples of one

another and are therefore parallel. A similar argument holds for the row vectors.

9. Inverses.

• Left multiply (AB)−1 = B−1A−1 on each side with (AB), then (AB)(AB)−1 = I and
(AB)B−1A−1 = ABB−1A−1 = AIA−1 = AA−1 = I .

10. Changing bases. Let’s expand the equation:

x = b1y1 + b2y2 + b3y3 =

 b11y1 + b21y2 + b31y3
b12y1 + b22y2 + b32y3
b13y1 + b23y2 + b33y3

 (4)

where bij is the jth element of vector bi. Equation (4) is equivalent to

x =

 | | |
b1 b2 b3

| | |

 y1
y2
y3

 ≡ By

Therefore, y = B−1x.

11. Solving linear equations.

• The equations can be rewritten in matrix form as(
2 3
1 −1

)(
x
y

)
=

(
20
4

)
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The inverse of the 2x2 matrix is:
1

5

(
1 3
1 −2

)
Therefore, x and y is given by:(

x
y

)
=

1

5

(
1 3
1 −2

)(
20
4

)
=

(
6.4
2.4

)

12. Solving linear equations.

• The equations are identical to the ones from Problem 11, just replace x with e1 and y with
e2. Therefore e1 = 6.4 and e2 = 2.4.

13. Index notation.

• Let’s write

A =


A11 A12 ... A1N

A21 A22 ... A2N
...

...
. . .

...
AN1 AN2 ... ANN

 , B =


B11 B12 ... B1N

B21 B22 ... B2N
...

...
. . .

...
BN1 BN2 ... BNN


Then

AB =



∑
i
A1iBi1

∑
i
A1iBi2 ...

∑
i
A1iBiN∑

i
A2iBi1

∑
i
A2iBi2 ...

∑
i
A2iBiN

...
...

. . .
...∑

i
ANiBi1

∑
i
ANiBi2 ...

∑
i
ANiBiN


and

BA =



∑
i
B1iAi1

∑
i
B1iAi2 ...

∑
i
B1iAiN∑

i
B2iAi1

∑
i
B2iAi2 ...

∑
i
B2iAiN

...
...

. . .
...∑

i
BNiAi1

∑
i
BNiAi2 ...

∑
i
BNiAiN


The trace is the sum along the diagonal elements of a matrix. Therefore Tr(AB) =

∑
j

∑
i
AjiBij

and Tr(BA) =
∑
j

∑
i
BjiAij , and the two are equivalent.
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• Take the trace of both sides of the equation, Tr(M) = Tr(V DV −1). The generaliza-
tion of the rule you learned in the previous part is that Tr(ABC...Z) = Tr(BC..ZA) =
Tr(C..ZAB) = ... Therefore we can write Tr(M) = Tr(V DV −1) = Tr(DV −1V ) =
Tr(DI) = Tr(D).

• This is easiest to see if the equation is rewritten as MV = V D. The rule for determinants
is det(AB...Z) = det(A)det(B)...det(Z). Therefore, taking the determinant: det(MV ) =
det(V D) = det(M)det(V ) = det(V )det(D), hence det(A) = det(D).

14. Rotation Matrices.

• The dot product of the two rows is − cos θ sin θ + sin θ cos θ = 0.

• The dot product of the two columns is cos θ sin θ − sin θ cos θ = 0.

•

RTR =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)

• x′ = Rx =

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
=

(
x cos θ + y sin θ
−x sin θ + y cos θ

)
The length of x′ is

|x′| =x′2 + y′2 = (x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2

=x2 cos2 θ + y2 sin2 θ + 2xy cos θ sin θ + x2 sin2 θ + y2 cos2 θ − 2xy cos θ sin θ

=x2(cos2 θ + sin2 θ) + y2(cos2 θ + sin2 θ) = x2 + y2 = |x|

15. Eigenvalues and eigenvectors

• Ax =

(
4 −2
1 1

)(
2
1

)
=

(
6
3

)
= 3

(
2
1

)
. The eigenvalue is 3.

• To find the eigenvalues, we need to solve the characteristic equation

|A− λI| =
∣∣∣∣ 4− λ −2

1 1− λ

∣∣∣∣ = (4− λ)(1− λ) + 2 = 0
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Since we know that λ = 3 is one of the eigenvalues, we can write this as (λ− 3)(λ− 2) = 0
(alternatively, we can just solve for the quadratic equation). Therefore, the second eigenvalue
is 2. To get the eigenvectors, we need to find the values x and y that satisfy(

4 −2
1 1

)(
x
y

)
= 2

(
x
y

)

Let’s rewrite this as

(
4x− 2y
x+ y

)
− 2

(
x
y

)
=

(
2x− 2y
x− y

)
=

(
0
0

)
Looking at either the top or bottom row shows that any vector where x = y will be an
eigenvector. Let’s just use the value (1 1)T. Then(

4 −2
1 1

)(
1
1

)
=

(
2
2

)
= 2

(
1
1

)
Therefore, (1 1)T is indeed an eigenvector with eigenvalue 2.

16. Eigenvalues and eigenvectors

• The characteristic equation is∣∣∣∣ 3− λ 2
3 −2− λ

∣∣∣∣ = (3− λ)(−2− λ)− 6 = (λ− 4)(λ+ 3) = 0

Therefore, the two eigenvalues are λ1 = 4 and λ2 = −3. To get the eigenvectors, we note(
3 2
3 −2

)(
x1
y1

)
= 4

(
x1
y1

)
and

(
3 2
3 −2

)(
x2
y2

)
= −3

(
x2
y2

)
Working through the multiplication and subtracting right hand sides from left hand sides:(

−x1 + 2y1
3x1 − 6y1

)
=

(
0
0

)
and

(
6x2 + 2y2
3x2 + y2

)
=

(
0
0

)
Therefore, vectors satisfying the conditions x1 = 2y1 and 3x2 = −y2 are eigenvectors, e.g.

the vectors
(

2
1

)
and

(
1
−3

)
are eigenvectors, with eigenvalues 4 and −3 respectively.

• The characteristic equation is λ2−2λ+5 = 0 whose solutions are λ± = 1±2i and whose
eigenvectors satisfy y+ = ix+ and y− = −ix−.
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• You can define the matrix in Matlab using M=[2 -3 1; 1 -2 1; 1 -3 2]; and obtain the
eigenvalues and eigenvectors by calling [V D]=eig(M), where the columns of V are the
eigenvectors and D is a diagonal matrix of eigenvalues. This should return

V =

 0.8165 −0.5774 −0.6786
0.4082 −0.5774 0.0186
0.4082 −0.5774 0.7343

 and D =

 1 0 0
0 0 0
0 0 1


• The trace of a matrix M is given by

∑
i
Mii, which is equal to 1 for the first matrix, 2 for

the second matrix, and 2 for the third matrix. In all three cases, the trace is equal to the sum
of the eigenvalues. For the 2 × 2 matrices, the determinants are −2 · 3 − 2 · 3 = −12 and
1 · 1 + 2 · 2 = 5, both of which are equal to their respective products of eigenvectors. The
3× 3 matrix can be performed by hand using Laplace development, but its much simpler in
Matlab to call det(M) which returns the value 0.

17. Eigenvectors of symmetric matrices. My apologies, because this problem is actually more
difficult than I intended, and I realized after the tutorial that my method only shows that
V TV commutes with D. There is also one crucial piece of information that I neglected
which makes this problem more manageable: assume the eigenvectors are distinct.

Now imagine that the vectors v1 and v2 are both eigenvectors of the matrix A with distinct
eigenvalues λ1 and λ2 respectively. If the dot product between v1 and v2 is zero, then the
two are orthogonal. Since, v1 and v2 are eigenvectors,Av1 = λ1v1 andAv2 = λ2v2. That
means that the dot product between Av1 and v2 is also equal to zero if both eigenvectors are
parallel. Let’s calculate the dot product between Av1 and v2:

λ1v1
Tv2 = (v1

TAT)v2 = (v1
TA)v2 = v1

T(Av2) = λ2v1
Tv2,

where we have replaced A for AT since A is symmetric. Therefore, λ1v1
Tv2 = λ2v1

Tv2

and because we stipulated that λ1 6= λ2, the condition can only be met if v1
Tv2 = 0.

Therefore, we have shown that any two eigenvectors with distinct eigenvalues, will be per-
pendicular. Now, if we choose eigenvectors that are normalized, i.e. vi

Tvi = 1, then we
have proved that V TV = I for symmetric matrices A where the eigenvectors are distinct.

18. Eigenvectors of symmetric matrices. Define the matrix in Matlab: A=[9 3 6; 3 7 4; 6
4 3]; and get the eigenvectors [V D]=eig(M). The eigenvectors are in the columns of V.
Calculate the dot product between any two eigenvectors using V(:,m)'*V(:,n) which will
yield 0 when n6=m and 1 when n=m.
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