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Example — model four in Kaplan and Glass

Imagine our time series of data is generated by the logistic map:

xt+1 = µxt(1 − xt).

With µ = 4, this map generates chaos. The system is indeed deterministic, but
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Figure 1: Logistic map

it looks “noisy”. The autocorrelation function is the same as for measurement
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Figure 2: Autocorrelation function

noise (“model one” from the last lecture). Recall that R(k) captures linear
correlations, but there is no guarantee for nonlinear systems. This suggests two
questions:

• How can we determine if the behavior of xt is deterministic?
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• And if it is, can we reconstruct the dynamics?

Idea: if the dynamics is deterministic, xt+1 should depend on previous xt, xt−1,
etc.

Example — logistic map

Plot Vt+1 = xt+1 − 〈x〉 vs. Vt = xt − 〈x〉 as a scatter plot: the “Return plot”
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Figure 3: Return plot

shows that xt is deterministic, and xt+1 depends only on previous xt.
What if the system is deterministic but more complex than 1d FDE?

Example — two coupled ODEs

ẋ = f(x, y)

ẏ = g(x, y)

If we know x(t) and ẋ(t) (or two other pieces of information), then the dynamics
are defined. So we can define an alternative phase plane using x and ẋ without
ever measuring y. Furthermore,

ẋ ≈
x(t + h) − x(t)

h
.

We can just use x(t + h) and x(t) to define a phase plane. Take, for example,
the Van der Pol system. As figures 6.18 and 6.19 in Kaplan and Glass show, the
approximate and exact phase plots are not identical, but they are very similar.
Equations of this form are clearly deterministic and we have (approximately)
reconstructed the dynamics.

What if d > 2?

Embedding a time series

Generalize the approach used to reconstruct a 2d phase portrait to higher di-
mensions by using additional time-lagged measurements:

~xt = (xt, xt−h, xt−2h, . . . , xt−(p−1)h),
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where

p = embedding dimension

h = embedding lag

In practice, we can keeping adding dimensions until we uncover the dynamics,
or we get tired.

Example — Lorenz equation

dx

dt
= 10(y − x)

dy

dt
= 28x − y − xz

dz

dt
= 28xy −

8z
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There are 3 coupled equations, so we need at most p = 3. In practice, we might
only have x(t). The we would embed with p = 2, p = 3, etc. Figures 6.21 and
6.22 in Kaplan and Glass illustrate this technique.

How do we know what h value to use? If h is too small, then xt ≈ xt−h ≈
xt−2h. If h is too big, then xt, xt−h, xt−2h are uncorrelated. Best bet is to use
an h that reflects the time scale of the dynamics, e.g. approximate periodicity.

Aside — Measuring dimension

Take, for example, the Lorenz equation. The attractor has dimension D ≈ 2.06.
How to measure d from reconstructed or real dynamics?

We use the “Box-counting” dimension:

1. Cover all points with boxes of integer dimension p and edge length ǫ0, and
count the number of boxes needed: N(ǫ0).

2. Repeat step 1 using boxes of edge length ǫ1 = ǫ0/2, ǫ2 = ǫ1/2, etc.

3. The dimension D is given by

lim
ǫ→0

N(ǫ) = c/ǫD,

so that

D ≈
log[N(ǫi+1)/N(ǫi)]

log[ǫi/ǫi+1]
.

Usually we find that, over a range of ǫ, D is approximately a constant,
this in practice is the “dimension”.

Detecting determinism in high dimensions

We use the fact that x(t) should be determined by previous values of x, that is,
future values can be predicted from past values.

We construct an algorithm to predict values of the time series based on the
past time series.

To predict xt+1 from x1, x2, . . . , xt:
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1. Embed the time series ~xt = (xt, xt−h, . . . , xt−(p−1)h).

2. Find the point ~xa closest to ~xt. (a < t)

3. Prediction: xt+1 ≈ xa+1.

Note: we didn’t need to build a model for the data to make a prediction, we
just used the existing datat directly: this is a “data-implicit model”. Variants:

2′. Find k points ~xa1
, ~xa2

, . . . , ~xak
closest to ~xt.

3′. Prediction: xt+1 ≈ 1
k

∑k

i=1 xai+1, the average of k closest point predic-
tions.

Questions — What are the advantages of embedding and averaging?
p is required to be big enough to capture underlying dynamics, e.g. for

Lorenz equation setting p = 1 (i.e., just one previous x) is not enough since
d = 2.06.

Overall, this is a useful approach for complex systems – the use of data is
unbiased.

Applications

• Using iteration to predict future beyond xt+1 (e.g. the ice ages example
in the text)

• Strategies: can the data be used to detect determinism? Can the data
predict itself?

Given x1, . . . , xn, make predictions for some subset of xt+1’s: Pt1+1, Pt2+1, . . . , Ptm+1.
To see if a system is deterministic, compare predictions to actual xt+1 values:

Prediction error E =
1

M

M
∑

i=1

(Pti+1 − xti+1)
2.

Compare — if we used the sample mean as our prediction for every xt+1:

1

M

M
∑

i=1

(mean −xti+1)
2 ≈ σ2.

So, the quality of our prediction depends on how E compares to σ2.

E

σ2
= relative prediction error:







≥ 1 random
0 perfect determinism

0 < E
σ2 < 1 some determinism
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