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Usually, it is not possible to measure all the dynamical variables of interest.
For example, when conducting experiments on nerve cells, the transmembrane
potential is measured, but not the recovery variables. Also the measurement
will contain some error, and will thus be related to the actual voltage through
some equation with noise.
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Figure 1: Transmembrane potential

Different types of noise

• measurement error — difference between measurement and actual value
of variable

• systematic error — consistent error due to flaw in measurement process

• dynamical noise — noise affecting dynamical variables (e.g. due to influ-
ences not accounted for in model)

Given the existence of noise, what can we infer from a set of measurements
about the underlying system?

Time-series analysis

Suppose we have a list of data points x1, x2, . . . , xn taken at particular times.
Are they governed by an ODE or FDE, or are they random?

Two quantities of interest are the sample mean and the sample variance:

sample mean mN ≡ 1

N

N∑
i=1

xi analogous to µ

sample variance σ2
N ≡ 1

N − 1

N∑
i=1

(xi − mN )2 analogous to σ2
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The N − 1 in the denominator of the sample variance assures that σ2
N when

averaged over many data samples will approach the true variance σ2.
mN is the “best estimate” of the center of the data points:

Error = E =
N∑

i=1

(xi − Mest)
2

dE

dMest

= 2

N∑
i=1

(xi − Mest) = 0,

so Mest = mN = 1

N

∑N

i=1
xi.

mN is an estimate of the actual mean µ of x(t), and σ2
N is an estimate of

the actual variance σ2 of x(t):

mN = µ + uncertainty

σ2
N = σ2 + uncertainty.

Usually, one ignores the uncertainty in σ2
N and just uses σN ≈ σ as a measure

of the spread of the data about the mean or sample mean. But uncertainty in
σ2

N ∼ 1/
√

N , so error could be significant for small sample size N .
Another quantity of interest is the standard error of the mean, which we

have seen before:
σN√
N

,

which measures the uncertainty in estimating µ by mN . Where does σN/
√

N
come from?

If the Xi’s are random variables with mean µ0 and variance σ2
0 , then as

N → ∞,
N∑

i=1

Xi ∼ N(µ0N,σ0

√
N),

so

mN =
1

N

N∑
i=1

Xi ∼ N(µ0, σ0/
√

N).

The sample mean mN therefore has standard deviation σ0/
√

N about the true
mean µ0, that is, 68% of the time mN is within σ0/

√
N of µ0, and 95% of the

time mN is within 2 σ0/
√

N of µ0.
So far we have not used the fact that the xi are measurements in a time series.

This is fine if we are making independent noisy measurements of a constant, but
what if x is a dynamical quantity?

Example — Lotka-Volterra

ẋ = x(α − βy) + ν

ẏ = y(γx − δ) + η,

where the quantities ν and η are dynamical noise, e.g. noise due to temperature,
humidity, other species, etc.
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Also suppose there is uncertainty in measuring the prey population. We
might model this measurement as

D(t) = x(t) + ξ(t),

where ξ(t) is measurement noise.

Models

Following Kaplan and Glass, first consider linear FDEs:

Model one: Dt = x∗ + Wt,

where Wt is white noise from measurement. The variable x has settled down to
a fixed value x∗ so that only variation is due to (white) measurement noise. So
the Dt are uncorrelated in time and all we can do is measure sample mean and
sample variable.

Model two: xt+1 = A + ζxt + νt, with |ζ| < 1

Dt = xt + Wt,

where νt is dynamical noise and Wt is measurement noise. There are two dis-
tinct sources of noise: Wt only affects measured value at time t, but νt affects
measured values at later times as well.

Without noise: xt = x∗ + (x0 − x∗)ζt, x∗ =
A

1 − ζ

= x∗ + (x0 − x∗)et ln ζ (0 < ζ < 1).

How can we deduce the exponential decay coefficient from the noisy data? First,
subtract out the sample mean:

Ṽt = Dt − mN ,

and let
Vt = Ṽt − Wt = Dt − mN − Wt = xt − x∗,

then, assuming mN = µ = x∗, and starting with the equation for xt+1, after a
little algebra:

Ṽt+1 = ζṼt + νt + (Wt+1 − ζWt).

Then
Vt+1 = ζVt + νt,

where νt is dynamical noise. Note that

Vt = xt − x∗.

So the fluctuations about the mean satisfy a simple linear equation with dy-
namical noise. Of course, we measure Ṽt. How can we find ζ? Choose ζest that
minimizes the difference between Ṽt+1 and ζṼt. That is, we want to minimize
the error:

E =
N−1∑
t=1

(Ṽt+1 − ζestṼt)
2.
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So set

dE

dζest

=
N−1∑
t=1

2(Ṽt+1 − ζestṼt)(−Ṽt) = 0.

So

ζest =

∑N−1

t=1
Ṽt+1Ṽt∑N−1

t=1
ṼtṼt

.

ζest is called the “correlation coefficient”. If we have enough data points N ,
then ζest ≃ ζ. A large ζest means that there is a high correlation in a scatter
plot of Ṽt+1 vs. Ṽt, and thus a slow decay of fluctuations about the fixed point.

More generally, a useful measure of how Vt+k depends on Vk is

Rnorm(k) =

∑N−k

t=1
Ṽt+kṼt∑N−k

t=1
ṼtṼt

.

Rnorm(k) is called the “normalized autocorrelation function”. Note that Rnorm(k =
1) = ζest, Rnorm(0) = 1.

What could we deduce from R(k) about the dynamics?

• Model one — Measurement noise only. There is a rapid fall off of R(k),
and ζest is small. The shape is often taken as the definition of white noise,
but we’ll see that the same R(k) can arise from deterministic evolution.

• Model two — Includes dynamical noise. Why is R(k) more slowly decaying
in this case?

Autocorrelation function and power spectra

The autocorrelation function and the power spectrum are two equivalent, com-
plementary ways of characterizing some time-dependent quantity.

Let V (t) be a time-dependent variable. The autocorrelation function V is

R(τ) = lim
T→∞

1

2T

∫ T

−T

V (t)V (t + τ) dt.

The power spectrum is the Fourier transform of R(τ):

S(ω) =

∫
∞

−∞

R(τ)e−i2πωτ dτ ≥ 0.

The power spectrum gives the weight of the various frequency components
(sin ωt and cos ωt) in V (t). What will S(ω) look like for the different R(k)
we have seen?

• Model one:

R(k)

ωk

S(ω)=>
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• Model two:

=>

ω

ω

S(ω)

S(ω)

k

k

δw ∼ 1
τdecay

δw ∼ 1
τdecay

τdecay

τdecay

=>R(k)

R(k)
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