Probability II - Random Variables

Prof. Ned Wingreen

MOL 410/510

Random variables

A "random variable" is a function defined on a sample space. A number X is associated with any sample point.

For example, for a coin toss let

$$
\begin{array}{ll}
X=1 & \text { for heads } \\
X=0 & \\
\text { for tails }
\end{array}
$$

The function $P(X=x)$ is the "probability distribution" of the random variable X. Again, for example, if the coin toss is fair,

$$
P(X=1)=P(X=0)=\frac{1}{2} .
$$

We will want to calculate a number of quantities associated with X. We start with the "mean" or "average."

Mean

$$
\mu(X)=\mu=\sum_{X} x P(X=x)
$$

The mean is the average value of X after a large number of trials. In our coin example,

$$
\mu(X)=1 \cdot P(X=1)+0 \cdot P(X=0)=1 \cdot \frac{1}{2}+0 \cdot \frac{1}{2}=\frac{1}{2} .
$$

Note that different random variables can be defined on the same sample space. In our coin toss example, we could have defined:

$$
\begin{array}{ll}
Y=1 & \text { for heads } \\
Y=-1 & \text { for tails }
\end{array}
$$

In that case,

$$
\mu(Y)=1 \cdot P(Y=1)+(-1) \cdot P(Y=-1)=1 \cdot \frac{1}{2}-1 \cdot \frac{1}{2}=0
$$

Variance and standard deviation

$$
\operatorname{var}(X)=\sum_{X}(x-\mu)^{2} P(X=x)
$$

The variance is a useful quality, as is the square root of the variance, the standard deviation:

$$
\sigma=\sqrt{\operatorname{var}(X)}, \text { or } \sigma^{2}=\operatorname{var}(X)
$$

The variance and standard deviation measure the spread of values of X about the mean. For the two random variables defined for the fair coin tosses,

$$
\begin{array}{r}
\sigma^{2}(X)=\left(1-\frac{1}{2}\right)^{2} \frac{1}{2}+\left(0-\frac{1}{2}\right)^{2} \frac{1}{2}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}, \text { so that } \sigma(X)=\frac{1}{2} \\
\sigma^{2}(Y)=(1)^{2} \frac{1}{2}+(-1)^{2} \frac{1}{2}=1, \text { so that } \sigma(Y)=1
\end{array}
$$

(The mean and variance of a random variable are also,respectively, called the " $1{ }^{\text {st }}$ moment" and the " 2 nd moment" of the random variable.

Another quantity of interest is the standard error of the mean, $\frac{\sigma}{\sqrt{N}}$. It measures how well we can estimate the mean from a finite sample. We will later derive this quantity and examine more closely its meaning.

Probability distributions

- A random variable that takes on discrete values is a "discrete random variable"
- A random variable that can take on all values in a given range is a "continuous random variable"

Example- Discrete random variable with the binomial distribution

Let X be the number of successes in N independent trials each with probability of success p. Then,

$$
P(X=x)=\binom{N}{x} p^{x}(1-p)^{x}, \text { defined on integers } x=0,1, \ldots, N
$$

We will now calculate $\mu(X)$ and $\sigma^{2}(X)$. We could calculate this directly from $P(x)$, but instead we will use these Theorems:

1. The mean of a sum of random variables is the sum of the means.
2. The variances of a sum of uncorrelated random variables is the sum of the variances.

By our assumption, $X=\sum_{N} X_{i}$, where

$$
X_{i}= \begin{cases}1 & \text { with } P\left(X_{i}=1\right)=p \\ 0 & \text { with } P\left(X_{i}=0\right)=1-p\end{cases}
$$

By the Theorems,

$$
\begin{aligned}
\mu(X) & =N \mu\left(X_{i}\right) \\
\sigma^{2}(X) & =N \sigma^{2}\left(X_{i}\right)
\end{aligned}
$$

It is easy to see that for a single trial

$$
\begin{aligned}
\mu\left(X_{i}\right) & =1 \cdot p+0 \cdot(1-p)=p \\
\sigma^{2}\left(X_{i}\right) & =(1-p)^{2} p+(0-p)^{2}(1-p)=(1-p)\left[(1-p) p+p^{2}\right]=p(1-p)
\end{aligned}
$$

This finally yields

$$
\begin{aligned}
\mu(X) & =N p \\
\sigma^{2}(X) & =N p(1-p)
\end{aligned}
$$

How does the "width" σ of the binomial distribution compare to its mean?

$$
\frac{\sigma}{\mu}=\frac{\sqrt{N p(1-p)}}{N p}=\frac{1}{\sqrt{N}} \sqrt{\frac{1-p}{p}}
$$

Relatively speaking, the width gets narrower as $1 / \sqrt{N}$, where N is the number of trials.

Example- X with the Poisson distribution

$$
P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1, \ldots
$$

By analogy with the Poisson distribution as the limit of the binomial distribution, the mean of the Poisson distribution is λ and the variance is λ as well. Since $\sigma=\sqrt{\lambda}$,

$$
\frac{\sigma}{\mu}=\frac{\sqrt{\lambda}}{\lambda}=\frac{1}{\sqrt{\lambda}}=\frac{1}{\sqrt{\mu}}
$$

What does the binomial distribution look like for $N=10, p=1 / 2$? A bar graph (only defined on integers). What would the distribution look like for $N=100$?

Indeed, for most purposes, for large N we can ignore the fact that $P(x)$ is defined only on integers.

Continuous random variables

The probability of achieving a particular value $P(x)=0$. The probability is only finite when we ask about x in an interval.

Example - Uniform distribution on a circle

This is a continuous fair roulette wheel. After a spin, $x=\theta$. All values of x between 0 and 2π are equally likely.

$$
\begin{gathered}
P(x=\pi / 4)=0 \\
P(0<x<\pi / 4)=1 / 8 \\
P(a<x<b)=\frac{b-a}{2 \pi}
\end{gathered}
$$

Figure 1: Uniform distribution on a circle

Figure 2: Probability density

Define a probability density:

$$
f_{X}(x)=\frac{1}{2 \pi}
$$

Then

$$
P(a<x<b)=\int_{a}^{b} f(x) d x=\int_{a}^{b} \frac{d x}{2 \pi}=\frac{b-a}{2 \pi}
$$

In general, for a continuous random variable we can define $f(x)$ as

$$
P(x<X<x+d x)=f(x) d x
$$

so that

$$
P(a<x<b)=\int_{a}^{b} f(x) d x
$$

Then

$$
\begin{aligned}
\mu(X) & =\int_{-\infty}^{\infty} x f(x) d x=\langle x\rangle=E[x], \text { the "expected value" of } x \\
\operatorname{var}(X) & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\left\langle(x-\mu)^{2}\right\rangle=E\left[(x-\mu)^{2}\right]
\end{aligned}
$$

In general, if g is a function of x,

$$
E[g(x)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Note that if X has mean μ and variance σ^{2}, then

$$
Y \equiv X-\mu
$$

has mean 0 and variance σ^{2}. So we can write a random variable as

$$
X=\mu+Y
$$

thereby "separating out" the mean.

Normal (Gaussian) distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

The mean is

$$
\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

Defining y as $\frac{x-\mu}{\sqrt{2 \sigma^{2}}}$ and noting that $d x=\sqrt{2 \sigma^{2}} d y$, we can substitute:

$$
\text { mean }=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}}\left(\sqrt{2 \sigma^{2}} y+\mu\right) e^{-y^{2}} d y
$$

The integral of the first term goes to zero, which leaves

$$
\frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^{2}} d y=\mu
$$

The normal distribution is ubiquitous, e.g. heights in a population, measurements, grades - we'll see later that many processes produce normal distributions.

Figure 3: Normal distributions with different σ
If X has a normal distribution with mean μ and standard deviation σ, write

$$
X \sim N(\mu, \sigma)
$$

We can also define a standardized random variable:

$$
\begin{aligned}
& z=\frac{X-\mu}{\sigma} \\
& z \sim N(0,1)
\end{aligned}
$$

For a normal distribution with mean $\mu=0$,

$$
\begin{aligned}
P(|z|<\sigma) & =0.683 \\
P(|z|<2 \sigma) & =0.95 \\
P(|z|<3 \sigma) & =0.997
\end{aligned}
$$

Almost all values of z are within 3 standard deviations of the mean.
(In Matlab randn is a standard normal random variable, with $\mu=0, \sigma^{2}=1$. To get a random variable with mean μ and standard deviation σ, use $\mu+\sigma$. randn.)

Figure 4: Standardized random variable

Test statistics: z-test and t-test

A test statistic is used to measure the difference between the data and what is expected based on a null hypothesis.
" z " tells how many standard errors an observed mean is from its expected value within a null model. Recall that the standard error of the mean is $\mathrm{SE}=$ $\frac{\sigma}{\sqrt{N}}$. So if we accurately know the standard deviation σ of each trial in the null model, we can evaluate $z=$ (observed mean - expected mean)/SE. The integral of the tails of the normal distribution past $|z|$ tell us the probability of observing by chance such a large deviation of the mean from its expected value.

The " t-test", or "Student's t-test" applies when we don't know the standard deviation σ of the null model, and have to estimate σ from a limited sample (see e.g. Statistics by Freedman, Pisani, and Purves, or any other statistics text).

The Law of Large Numbers

Why is the normal distribution so ubiquitous?
The Law of Large Numbers - the connection between probability theory and reality:

Random variables X and Y are independent if the distribution of X does not depend on the outcome of Y, and vice versa. For example, flipping a coin: the probability of heads on the $21^{\text {st }}$ flip does not depend on the outcome of the $10^{\text {th }}$ flip.

Then, if $X_{1}, X_{2}, \ldots, X_{n}$ are independent identically distributed random variables (discrete or continuous), each with finite mean μ, and if we define

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}, \text { and } \varepsilon>0
$$

then

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \varepsilon\right)=0
$$

The probability of $\frac{S_{n}}{n}$, the arithmetic mean, differing from its expected value approaches zero as $n \rightarrow \infty$. Note that there is no restriction on the variance of X_{i}.

Central Limit Theorem

This is why the normal distribution is so important.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be identical independent random variables with mean μ and variance σ^{2}. If we again define S_{n} as $X_{1}+\cdots+X_{n}$, then

$$
\lim _{n \rightarrow \infty} P\left(a \leq \frac{S_{n}-\mu n}{\sigma \sqrt{n}} \leq b\right)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-y^{2} / 2} d y
$$

That is, the random variable $\frac{S_{n}-\mu n}{\sigma \sqrt{n}}=\frac{S_{n} / n-\mu}{\sigma / \sqrt{n}}$ is asymptotically normal.
This holds for X_{i} 's with any distribution, e.g. for the coin toss random variable X, where

$$
\begin{array}{ll}
X=1 & \text { for heads } \\
X=0 & \text { for tails. }
\end{array}
$$

The sum of enough random variables of this type will be normal:

$$
S_{n} \rightarrow N(\mu n, \sigma \sqrt{n}) \text { as } n \rightarrow \infty
$$

After N coin tosses, the distribution of the number of heads x is the binomial distribution:

$$
P(x)=\binom{N}{x} p^{x}(1-p)^{x}
$$

But the number of heads can also be written as

$$
S_{N}=X_{1}+\cdots+X_{N}
$$

Where the X_{i} are defined as above. So as $N \rightarrow \infty$:

$$
S_{N}(x)=P_{\text {Binomial }}(x) \rightarrow N(\mu N, \sigma \sqrt{N}) \text { as } N \rightarrow \infty
$$

Therefore, the binomial distribution for large N approaches the normal distribution with the same mean and variance.

