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Random variables

A “random variable” is a function defined on a sample space. A number X is
associated with any sample point.

For example, for a coin toss let

X = 1 for heads

X = 0 for tails

The function P (X = x) is the “probability distribution” of the random variable
X. Again, for example, if the coin toss is fair,

P (X = 1) = P (X = 0) =
1

2
.

We will want to calculate a number of quantities associated with X. We start
with the “mean” or “average.”

Mean

µ(X) = µ =
∑

X

xP (X = x)

The mean is the average value of X after a large number of trials. In our coin
example,

µ(X) = 1 · P (X = 1) + 0 · P (X = 0) = 1 · 1

2
+ 0 · 1

2
=

1

2
.

Note that different random variables can be defined on the same sample space.
In our coin toss example, we could have defined:

Y = 1 for heads

Y = −1 for tails

In that case,

µ(Y ) = 1 · P (Y = 1) + (−1) · P (Y = −1) = 1 · 1

2
− 1 · 1

2
= 0
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Variance and standard deviation

var(X) =
∑

X

(x − µ)2P (X = x)

The variance is a useful quality, as is the square root of the variance, the standard
deviation:

σ =
√

var(X), orσ2 = var(X).

The variance and standard deviation measure the spread of values of X about
the mean. For the two random variables defined for the fair coin tosses,

σ2(X) = (1 − 1

2
)2

1

2
+ (0 − 1

2
)2

1

2
=

1

8
+

1

8
=

1

4
, so that σ(X) =

1

2

σ2(Y ) = (1)2
1

2
+ (−1)2

1

2
= 1, so that σ(Y ) = 1

(The mean and variance of a random variable are also,respectively, called the
“1st moment” and the “2nd moment” of the random variable.

Another quantity of interest is the standard error of the mean, σ√
N

. It

measures how well we can estimate the mean from a finite sample. We will later
derive this quantity and examine more closely its meaning.

Probability distributions

• A random variable that takes on discrete values is a “discrete random
variable”

• A random variable that can take on all values in a given range is a “con-
tinuous random variable”

Example— Discrete random variable with the binomial dis-
tribution

Let X be the number of successes in N independent trials each with probability
of success p. Then,

P (X = x) =

(

N
x

)

px(1 − p)x, defined on integers x = 0, 1, . . . , N.

We will now calculate µ(X) and σ2(X). We could calculate this directly from
P (x), but instead we will use these Theorems:

1. The mean of a sum of random variables is the sum of the means.

2. The variances of a sum of uncorrelated random variables is the sum of the
variances.

By our assumption, X =
∑

N Xi, where

Xi =

{

1 with P (Xi = 1) = p
0 with P (Xi = 0) = 1 − p
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By the Theorems,

µ(X) = Nµ(Xi)

σ2(X) = Nσ2(Xi)

It is easy to see that for a single trial

µ(Xi) = 1 · p + 0 · (1 − p) = p

σ2(Xi) = (1 − p)2p + (0 − p)2(1 − p) = (1 − p)[(1 − p)p + p2] = p(1 − p).

This finally yields

µ(X) = Np

σ2(X) = Np(1 − p).

How does the “width” σ of the binomial distribution compare to its mean?

σ

µ
=

√

Np(1 − p)

Np
=

1√
N

√

1 − p

p

Relatively speaking, the width gets narrower as 1/
√

N , where N is the number
of trials.

Example— X with the Poisson distribution

P (X = x) = e−λ λx

x!
, x = 0, 1, . . .

By analogy with the Poisson distribution as the limit of the binomial distribu-
tion, the mean of the Poisson distribution is λ and the variance is λ as well.
Since σ =

√
λ,

σ

µ
=

√
λ

λ
=

1√
λ

=
1√
µ

What does the binomial distribution look like for N = 10, p = 1/2? A bar graph
(only defined on integers). What would the distribution look like for N = 100?

Indeed, for most purposes, for large N we can ignore the fact that P (x) is
defined only on integers.

Continuous random variables

The probability of achieving a particular value P (x) = 0. The probability is
only finite when we ask about x in an interval.

Example — Uniform distribution on a circle

This is a continuous fair roulette wheel. After a spin, x = θ. All values of x
between 0 and 2π are equally likely.

P (x = π/4) = 0

P (0 < x < π/4) = 1/8

P (a < x < b) =
b − a

2π
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θ

Figure 1: Uniform distribution on a circle
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Figure 2: Probability density

Define a probability density:

fX(x) =
1

2π

Then

P (a < x < b) =

∫ b

a

f(x) dx =

∫ b

a

dx

2π
=

b − a

2π

In general, for a continuous random variable we can define f(x) as

P (x < X < x + dx) = f(x) dx,

so that

P (a < x < b) =

∫ b

a

f(x) dx.

Then

µ(X) =

∫ ∞

−∞

xf(x)dx = 〈x〉 = E[x], the “expected value” of x

var(X) =

∫ ∞

−∞

(x − µ)2f(x)dx = 〈(x − µ)2〉 = E[(x − µ)2]

In general, if g is a function of x,

E[g(x)] =

∫ ∞

−∞

g(x)f(x) dx

Note that if X has mean µ and variance σ2, then

Y ≡ X − µ

has mean 0 and variance σ2. So we can write a random variable as

X = µ + Y,

thereby “separating out” the mean.
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Normal (Gaussian) distribution

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

The mean is
∫ ∞

−∞

x
1√

2πσ2
e−(x−µ)2/2σ2

dx

Defining y as x−µ
√

2σ2
and noting that dx =

√
2σ2dy, we can substitute:

mean =

∫ ∞

−∞

1√
π

(
√

2σ2y + µ)e−y2

dy

The integral of the first term goes to zero, which leaves

µ√
π

∫ ∞

−∞

e−y2

dy = µ

The normal distribution is ubiquitous, e.g. heights in a population, mea-
surements, grades — we’ll see later that many processes produce normal distri-
butions.

µ

large σ

small σ

Figure 3: Normal distributions with different σ

If X has a normal distribution with mean µ and standard deviation σ, write

X ∼ N(µ, σ)

We can also define a standardized random variable:

z =
X − µ

σ
z ∼ N(0, 1)

For a normal distribution with mean µ = 0,

P (|z| < σ) = 0.683

P (|z| < 2σ) = 0.95

P (|z| < 3σ) = 0.997

Almost all values of z are within 3 standard deviations of the mean.
(In Matlab randn is a standard normal random variable, with µ = 0, σ2 = 1.

To get a random variable with mean µ and standard deviation σ, use µ + σ ·
randn.)
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Figure 4: Standardized random variable

Test statistics: z-test and t-test

A test statistic is used to measure the difference between the data and what is
expected based on a null hypothesis.

“z” tells how many standard errors an observed mean is from its expected
value within a null model. Recall that the standard error of the mean is SE =

σ√
N

. So if we accurately know the standard deviation σ of each trial in the

null model, we can evaluate z = (observed mean − expected mean)/SE. The
integral of the tails of the normal distribution past |z| tell us the probability of
observing by chance such a large deviation of the mean from its expected value.

The “t-test”’ or “Student’s t-test” applies when we don’t know the standard
deviation σ of the null model, and have to estimate σ from a limited sample (see
e.g. Statistics by Freedman, Pisani, and Purves, or any other statistics text).

The Law of Large Numbers

Why is the normal distribution so ubiquitous?
The Law of Large Numbers – the connection between probability theory and

reality:
Random variables X and Y are independent if the distribution of X does

not depend on the outcome of Y , and vice versa. For example, flipping a coin:
the probability of heads on the 21st flip does not depend on the outcome of the
10th flip.

Then, if X1,X2, . . . ,Xn are independent identically distributed random vari-
ables (discrete or continuous), each with finite mean µ, and if we define

Sn = X1 + X2 + · · · + Xn, and ε > 0,

then

lim
n→∞

P

(∣

∣

∣

∣

Sn

n
− µ

∣

∣

∣

∣

≥ ε

)

= 0

The probability of Sn

n , the arithmetic mean, differing from its expected value
approaches zero as n → ∞. Note that there is no restriction on the variance of
Xi.

Central Limit Theorem

This is why the normal distribution is so important.
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Let X1,X2, . . . ,Xn be identical independent random variables with mean µ
and variance σ2. If we again define Sn as X1 + · · · + Xn, then

lim
n→∞

P

(

a ≤ Sn − µn

σ
√

n
≤ b

)

=
1√
2π

∫ b

a

e−y2/2 dy

That is, the random variable Sn−µn
σ
√

n
= Sn/n−µ

σ/
√

n
is asymptotically normal.

This holds for Xi’s with any distribution, e.g. for the coin toss random
variable X, where

X = 1 for heads

X = 0 for tails.

The sum of enough random variables of this type will be normal:

Sn → N(µn, σ
√

n) as n → ∞

After N coin tosses, the distribution of the number of heads x is the binomial
distribution:

P (x) =

(

N
x

)

px(1 − p)x

But the number of heads can also be written as

SN = X1 + · · · + XN ,

Where the Xi are defined as above. So as N → ∞:

SN (x) = PBinomial(x) → N(µN, σ
√

N) as N → ∞

Therefore, the binomial distribution for large N approaches the normal distri-
bution with the same mean and variance.
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