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Tossing a coin – the Binomial Distribution

There are two possible outcomes, heads or tails, which we label as H and T.
One toss is H or T, an “event” or “sample point.” Multiple tosses: HTH... or
HHH..., etc.

Ω = {all possible outcomes}, which we call the “sample space.”
Probabilities are assigned to each outcome in the sample space. By conven-

tion, the sum of probabilities of all possible outcomes is 1. So for one toss:

P (H) + P (T ) = 1

For a fair coin, P (H) = P (T ) = 1/2, and for a biased coin P (H) 6= P (T ), e.g.
P (H) = 3/5, P (T ) = 2/5.

What does it mean to say P (H) = 1/2? For a large number of tosses, 1/2
will be heads. (We assume each toss is independent.)

What is the probability of getting heads twice in two tosses of a fair coin?
For a fair coin, all outcomes are equally likely:

Ω = {HH, HT, TH, TT}

P (HH) =
1

2
· 1

2
=

1

4

What is the probability of n heads in N tosses?

• Fair coin: If all outcomes are equally likely,

P (event) =
number of ways event can occur

total number of outcomes

The total number of outcomes is 2N , and the number of ways to achieve
n heads is

N !

(N − n)!n!
=

(
N
n

)

since N !/(N −n)! is the number of ways to arrange n heads labeled 1, ..., n
among N events, and n! is the number of permutations of n heads (that
is, the factor by which we have overcounted).

So

P (n) =

(
N
n

)
1

2N
.
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• Biased coin: P (H) = p 6= 1/2. All outcomes are not equally likely. The
probability of any particular outcome of heads, e.g.

P (HHHHHHH....H
︸ ︷︷ ︸

n

TTT...T
︸ ︷︷ ︸

N−n

) = p · p · p · p... · p
︸ ︷︷ ︸

n

(1 − p) · (1 − p) · (1 − p)... · (1 − p)
︸ ︷︷ ︸

N−n

,

so that

PBinomial(n) =

(
N
n

)

pn(1 − p)N−n.

This is the “binomial distribution.”

Poisson distribution

This is the limit of the binomial distribution for p << 1. For instance: what is
the probability of finding zero resistant mutants in a colony of 109 cells, each
with a probability of 2 × 10−9 of having mutated to resistance:

N = 109

p = 2 × 10−9

so that for λ, the expected number of mutants, we have

λ = Np = 2.

The Poisson distribution expresses the limit of the binomial distribution
when p is small and N is large, so that λ = Np is moderate. As above, we have

P (n) =

(
N
n

)

pn(1 − p)N−n =
N !

n!(N − n)!
pn(1 − p)N−n.

Consider the first few terms

P (0) =

(
N
0

)

(1 − p)N

Use (1 − p)N = elog(1−p)N

= eN log(1−p) ≈ eN(−p) = e−Np = e−λ

P (0) = e−λ

P (1) =

(
N
1

)

(1 − p)N−1 ≈ Npe−Np = λe−λ

Using Sterling’s formula N ! ∼
√

2πNN+ 1

2 e−N yields

P (n) ≈ NN

(N − n)N−n

√

N

N − n

e−n

n!
pn(1 − p)N−n

≈
(

N

N − n

)N

Nn e−n

n!
pn(1 − p)N−n,

since
√

N
N−n

≈ 1. We now observe that

(
N

N − n

)N

=

(
1

1 − n
N

)N

≈
(

1 +
n

N

)N

≈ e
n

N
N = en.
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So

P (n) ≈ en(pN)n e−n

n!
(1 − p)N−n = (pN)n 1

n!
(1 − p)N−n.

In a similar way,

(1 − p)N−n ≈ e−p(N−n) ≈ e−pN = e−λ,

so that

PPoisson(n) = e−λ λn

n!
,

the Poisson distribution.
Since λ is the expected number of resistant mutants, it is easy to find the

probability of no mutants:

P (0) = e−λ = e−2 ≈ 0.135.

Hypergeometric distribution

The hypergeometric distribution describes the probability of finding k “special
elements” in a randomly chosen group of r elements. For instance, what is
the random probability that in a gene expression experiment 20 of the top 100
upregulated genes will be involved in cell cycle if 200 out of 5000 total genes are
cell-cycle related?

N − N1

N1

r − k

k

Figure 1: Hypergeometric distribution schematic

N = total elements (5000)

N1 = special elements (200)

r = number chosen (100)

k = number special (20)

so that r − k is the number of non-special elements. We seek

P (k) =
ways of choosing exactly k special and r − k non-special elements

total ways of choosing r elements

Special elements can be chosen in

(
N1

k

)

ways, non-special elements can be

chosen in

(
N − N1

r − k

)

ways, while total ways of choosing r elements is

(
N
r

)

.
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Since any choice of k special elements can be combined with any choice of
r − k non-special elements, we get

PHypergeometric(k) =

(
N1

k

) (
N − N1

r − k

)

(
N
r

)

which can be rearranged to yield the canonical expression

P (k) =
N1!

k!(N1 − k)!

(N − N1)!

(r − k)!(N − N1 − r + k)!

r!(N − r)!

N !

=

(
r
k

)(
N − r
N1 − k

)

(
N
N1

)

For our example:

P (k = 20) =

(
100
20

)(
4900
180

)

(
5000
200

)

How surprised should one be by finding 20 out of 100 genes involved in the
cell cycle? Perhaps it’s better to ask for the probability of seeing 20 or more

out of 100 genes:

P+(20) =

100∑

k=20

P (k) ≈ 1.37 × 10−9

So it is very unlikely to find 20 cell cycle genes out of the top 100 by ran-
dom chance. This probability is usually reported as a so-called “p-value” =
− log10 P+(k). In our case, the p-value is 8.86.

Null models and “confidence”

The above is an example of the use of a null model in statistics. From the data,
the best we can do is to report our confidence that the data is not just a random
outcome. So we assume a null model (in this case, randomly picked genes) and
calculate the probability of the occurrence by chance of an outcome at least as
biased as the observed data. Usually, if this probability is < 5%, we report the
result as significant. But beware, if we are testing multiple hypotheses (e.g. not
just overlap with cell-cycle genes, but with other gene categories as well) then
it becomes more likely that at least one apparent correlation will occur just by
chance.
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