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Higher dimensional linear systems

In general such systems are of the form:

dx1

dt
= a11x1 + a12x2 + · · · + a1NxN

dx2

dt
= a21x1 + a22x2 + · · · + a2NxN

...

dxN

dt
= aN1x1 + aN2x2 + . . . + aNNxN ,

so that
d~x

dt
= A~x,

where A is the N ×N matrix of coefficients aij . Note that one can write an N th

order differential equation in one variable x as N coupled 1st order equations,
for example by letting x1 = x, x2 = ẋ, etc.

Solutions can usually be written as

xi(t) =
∑

j

cije
λjt,

where the λ are the eigenvalues of A. As for 2-dimensional linear equations,
eigenvalues are roots of characteristic equation:

det{A − λI} = 0,

an nth order polynomial.

Eigenvalues

Eigenvalues λ are either real numbers or pairs of complex conjugates. Behavior
as t → ∞ is determined by eigenvalues:

• positive real parts ⇒ divergence

• negative real parts ⇒ exponential decay to 0

• complex conjugates ⇒ oscillations (while diverging or decaying)

• zero real parts ⇒ special cases, e.g. fixed lines, persistent oscillations.
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Remark: Degenerate eigenvalues allow other solutions for xi(t). Take, for
example, the damped harmonic oscillator:

ẍ + 2ẋ + x = 0

Let y = ẋ, so that

ẋ = y

ẏ =−x − 2y.

Then

A =

(

0 1
−1 −2

)

and

−λ(−2 − λ) + 1 = 0

λ2 + 2λ + 1 = 0

(λ + 1)2 = 0

λ1,2 = −1,

where the general solution is

x(t) = c1e
−t + c2te

−t

Higher dimensional nonlinear systems

Example - Lorenz equations

The Lorenz equations are a simplified model of convective rolls in the atmo-
sphere. In what follows, σ is the Prandtl number, r is the Rayleigh number,
and b describes the aspect ratio. The Prandtl number σ, defined as ν/κ, where
ν is the kinematic viscosity and κ is the thermal diffusivity, determines the type
of convection. The Rayleigh number r, defined as gα∆Td3/νκ, determines the
onset of convection.

These equations are:

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz

Which are the nonlinear terms? The Lorenz system is dissipative, that is, vol-
umes in phase space contract.

n̂ ~f

Figure 1: Phase Space

2



Consider the small volume in phase space shown in Fig. 1, where n̂ is
a surface normal and ~f is the instantaneous velocity in the phase space, i.e.
(ẋ, ẏ, ż).

In a time dt, a patch of area dA sweeps out a volume (~f · n̂) dtdA. Therefore,
we have

V (t + dt) = V (t) +

∫

S

(~f · n̂) dtdA,

so that

V̇ =
V (t + dt) − V (t)

dt
=

∫

S

(~f · n̂) dA

=

∫

V

(~∇ · ~f) dV,

where (~∇ · ~f) = ∂fx

∂x
+

∂fy

∂y
+ ∂fz

∂z
.

For the Lorenz system,

~∇ · ~f =
∂

∂x
[σ(y − x)] +

∂

∂y
[rx − y − xz] +

∂

∂z
[xy − bz]

= −σ − 1 − b = −(σ + 1 + b),

which is strictly less than 0. Therefore V (t) = V (0)e−(σ+1+b)t, and volumes in
phase space shrink exponentially.

So what can happen as t → ∞?

• fixed point(s)

• limit cycle(s)

• ??

There are possible fixed points at ẋ = ẏ = ż = 0:

• The origin: (x∗, y∗, z∗) = (0, 0, 0) Linear stability analysis:





ẋ
ẏ
ż



 =





−σ σ 0
r −1 0
0 0 −b



 .

There is exponential decay in the z direction. For the 2 by 2 submatrix
describing the x and y dynamics, the trace is τ = −σ − 1 and the deter-
minant is ∆ = σ(1− r), so the fixed point at the origin is stable for r < 1,
unstable for r > 1 .

• C+ and C−: x∗ = y∗ = ±
√

b(r − 1), z∗ = r − 1. This is stable for

1 < r < rH =
(

σ(σ+b+3)
σ−b−1

)

.

For r > rH , there are no stable fixed points, no limit cycle, and no diver-
gence: the system stays finite and collapses to a set of zero volume (by
volume contraction), but it never settles down.

What does this mean? Chaos on a strange attractor.
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What is chaos?

• Aperiodic behavior for all time,

• in a deterministic system,

• with sensitive dependence on initial conditions.

(Why couldn’t we get chaos for d = 2? Because there is no crossing of
trajectories.)

• “Aperiodic” means trajectories do not settle down to fixed points or peri-
odic or quasi-periodic orbits as t → ∞.

• “Deterministic” means that there are no random driving forces

• “Sensitive dependence on initial conditions” means that nearby trajecto-
ries separate exponentially fast.

How to quantify these notions?

Liapunov exponent

~x(t) on the Lorenz attractor:
We start with |δ(0)| <<< 1 (e.g. 10−15), and then

|~δ(t)| ∼ |~δ(0)|eλt

λ is the Liapunov exponent.
(As an aside, we need to average to get λ, and |~δ(t)| saturates. Note also

that there are really N Liapunov exponents for an N dimensional system, |~δ(t)|
is dominated by the largest.)

ln |~δ|

t

Figure 2: Liapunov exponent

λ > 0 supplies a “time horizon” for prediction.

|~δ(t)| ∼ |~δ(0)|eλthorizon ∼ 1,

so that

thorizon ∼
1

λ
ln

1

|~δ(0)|

The time horizon therefore increases very, very slowly with the accuracy of
initial conditions, which is why weather prediction is hard.
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Figure 3: Lorenz System

The Lorenz map and finite-difference equations

Lorenz noted the following regarding the map:

the trajectory apparently leaves one spiral only after exceeding some
critical distance from the center. Moreover, the extent to which this
distance is exceeded appears to determine the point at which the
next spiral is entered; this in turn seems to determine the number
of circuits to be executed before changing spirals again. It therefore
seems that some single feature of a given circuit should predict the
same feature of the following circuit.

Lorenz focused on zn, the nth local maximum of z(t).
Specifically, he tried to see how zn predicts zn+1.

zn+1

50

50

25

25 zn

Figure 4: Lorenz Map

The points fall nearly on a curve! Just like finite difference equation: |f ′(z)| >
1 for all z implies no stable fixed point or limit cycle!
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