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Example — Action potentials in nerve cells
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Figure 1: Nerve cell

Hodgkin-Huxley (1952)

• voltage (Vin−Vout) starts out negative (∼ −70 mV), a “resting potential”

• perturbation (e.g. injected current) increases voltage, which opens sodium
channels

• Na+ enters axon, increases voltage even more, to ∼ +100 mV

• sodium channels close spontaneously in ∼ 1 ms

• K+ leakage returns voltage to ∼ −70 mV

• sodium pumps restore Na+ gradient and resting potential
-70mv

110 mV

1 ms

The result is a transient depolarization wave that moves down the axon,
though the wave doesn’t spread. This is a “soliton.”

Fitzhugh-Nagumo equation

A simplified model is the Fitzhugh-Nagumo equation:

dV

dt
= I(t) − V (V − a)(V − 1) − W V = voltage

dW

dt
= ε(V − γW ) W = recovery variable (like channels closing).

Find nullclines:
Consider the phase plane for I = 0 (with parameters as in Kaplan and Glass:

ε = 0.008, a = 0.139, γ = 2.54).
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Figure 2: I = 0 phase plane

There is clearly a fixed point at the origin.

for V > γW, Ẇ > 0;

for W > −V (V − a)(V − 1), V̇ < 0.

Linear stability analysis of the fixed point at (0, 0):

V̇ = f(V,W ) = −V (V − a)(V − 1) − W

Ẇ = g(V,W ) = ε(V − γW )

J =

(

∂f
∂V

∂f
∂W

∂g
∂V

∂g
∂W

)
∣

∣

∣

∣

V =0,W=0

∂f

∂V
= −(V − a)(V − 1) − V (V − 1) − V (V − a) = −a (with V = 0)

∂f

∂W
= −1

∂g

∂V
= ε

∂g

∂W
= −εγ.

Jacobian J =

(

−a −1
ε −εγ

)

∆ = det J = ε(1 + aγ)

τ = tr J = −a − εγ

λ1,2 =
1

2
(τ ±

√

τ2 − 4∆) = −0.797 ± 0.067i
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Which implies a stable focus at the origin.
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But notice that flow along V -axis is away from origin for a < V < 1. So if a
transient current I(t) is enough to make V > a, then the trajectory will extend
to V ≈ 1 before returning to the origin. The action potential is “stereotyped”:
once V > a, the overall trajectory will be approximately independent of the
precise initial value of V .
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Figure 3: Action potential

Example — Competence in Bacillus subtilis

(cf. G.M Süel et al. Nature 23 March 2006.) Under certain conditions (e.g.
starvation), a fraction (. 20%) of the cells in a colony of the gram-positive
bacterium B. subtilis become transiently competent to take up DNA from the
medium — called “competence.” This is an example of an excitable system:

Protease

ComSComK

Figure 4: B. subtilis competence

• Com K positively autoregulated — “competence factor”

• protease acts on Com K or Com S
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• Com K represses Com S (possibly with delay)

K̇ = ak+
bkKn

kn
0 + Kn

−
K

1 + K + S

Ṡ =
bS

1 + ( K
k1

)β
−

S

1 + K + S

• Phase portraits for different parameter values (Figure 5).
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Figure 5: Phase portraits

Apparently, noise, e.g. in protein levels, excites the system out of a stable fixed
point and produces era of competence.

The parameter range for excitable phase portrait is very small. But the
range increases if a delay in Com S repression by Com K is included.

Qualitative effect of delay K(t − τ)

~v(t)
~v(t − τ )

Figure 6: Delay effects
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In the bistable region, we have stable focus at competent fixed point. Time
delay includes some of velocity vector from time t − τ . For large enough de-
lays, the velocity vector begins to point outward, that is, stable focus becomes
unstable focus.
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Linear-stability analysis for time-delay
differential equations

Example — Single time delay τ

~̇x = ~f(~x(t), ~x(t − τ)) write ~x(t) = ~x, ~x(t − τ) = ~xτ

~x = ~x∗ + δ~x linear stability analysis

We have

~̇x =δ~̇x = ~f(~x∗ + δ~x, ~x∗ + δ~xτ )

δ~̇x ≈ J0δ~x + Jτ δ~xτ , since ~f(~x∗, ~x∗) = 0.

By linearity, δ~x(t) = ~Aeλt. So

λ ~A = (J0 + e−λτ
Jτ ) ~A,

and so
det{J0 + e−λτ

Jτ − λI} = 0

is an eigenvalue problem. We look to the characteristic equation. Unlike the
ODE case, a DDE characteristic equation is not a polynomial in λ, but what’s
called a “quasi-polynomial.”

If Re{λ} > 0 for any solution λ (and there are generally an infinite number
of solutions!), then the fixed point ~x∗ is unstable.

Delays, in other words, can destabilize otherwise stable fixed points.

Example — Linear system with delay

ẋ = ax + by(t − τ)

ẏ = cx + dy

A fixed point exists at the origin.

J0 =

(

a 0
c d

)

Jτ =

(

0 e−λτ b

0 0

)

Eigenvalue problem:

det

{

a − λ e−λτ b

c d − λ

}

= 0

(a − λ)(d − λ) − bce−λτ = 0

λ2 − (a + d)λ + ad − bce−λτ = 0

No delay (τ = 0)

λ1,2 =
1

2
(a + d ±

√

(a + d)2 − 4(ad − bc))

Assume det = ad − bc > 0. If a < 0, d < 0, we cannot have an unstable cycle.
(i.e., tr < 0)
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Finite delay (τ > 0)

For simplicity, we consider a short delay, with λτ << 1.

λ2 − (a + d)λ + ad − bc(1 − λτ) = 0

λ2 − (a + d − bcτ)λ + ad − bc = 0

(This corresponds to a change from trace → trace − bcτ .) And so,

λ1,2 =
1

2
(a + d − bcλ ±

√

(a + d + bcτ)2 − 4(ad − bc))

If a + d − bcτ > 0,Re{λ1,2} > 0. So even if a < 0, d < 0, a delay τ can make
a stable cycle unstable. In practice, delays are often used in biology along with
negative feedback to produce oscillations, e.g. circadian rhythms.
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