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Example — Action potentials in nerve cells
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Figure 1: Nerve cell

Hodgkin-Huxley (1952)

voltage (Vin — Vout) starts out negative (~ —70 mV), a “resting potential”

perturbation (e.g. injected current) increases voltage, which opens sodium
channels

Na™ enters axon, increases voltage even more, to ~ +100 mV
sodium channels close spontaneously in ~ 1 ms
K™ leakage returns voltage to ~ —70 mV

sodium pumps restore Nat gradient and resting potential

The result is a transient depolarization wave that moves down the axon,
though the wave doesn’t spread. This is a “soliton.”

Fitzhugh-Nagumo equation

A simplified model is the Fitzhugh-Nagumo equation:
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Find nullclines:
Consider the phase plane for I = 0 (with parameters as in Kaplan and Glass:
€ =0.008,a = 0.139, vy = 2.54).
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Figure 2: I = 0 phase plane

There is clearly a fixed point at the origin.
W > 0;
V <O0.

for V> AW,

for W > —V(V —a)(V - 1),
Linear stability analysis of the fixed point at (0,0):
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Which implies a stable focus at the origin.

But notice that flow along V-axis is away from origin for a < V < 1. So if a
transient current I(t) is enough to make V' > a, then the trajectory will extend
to V = 1 before returning to the origin. The action potential is “stereotyped”:
once V > a, the overall trajectory will be approximately independent of the
precise initial value of V.
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Figure 3: Action potential
Example — Competence in Bacillus subtilis

(cf. G.M Siiel et al. Nature 23 March 2006.) Under certain conditions (e.g.
starvation), a fraction (< 20%) of the cells in a colony of the gram-positive
bacterium B. subtilis become transiently competent to take up DNA from the
medium — called “competence.” This is an example of an excitable system:
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Figure 4: B. subtilis competence

e Com K positively autoregulated — “competence factor”

e protease acts on Com K or Com S
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e Com K represses Com S (possibly with delay)
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e Phase portraits for different parameter values (Figure 5).
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Figure 5: Phase portraits

Apparently, noise, e.g. in protein levels, excites the system out of a stable fixed
point and produces era of competence.

The parameter range for excitable phase portrait is very small. But the
range increases if a delay in Com S repression by Com K is included.

Qualitative effect of delay K (¢t — 1)

Figure 6: Delay effects



In the bistable region, we have stable focus at competent fixed point. Time
delay includes some of velocity vector from time ¢ — 7. For large enough de-
lays, the velocity vector begins to point outward, that is, stable focus becomes
unstable focus.



Linear-stability analysis for time-delay
differential equations

Example — Single time delay 7
= f(Zt),Zt—71))  write Z(t) =7, 8t — 1) = I,
=T +0T linear stability analysis

We have

& =01 = f(&" + 62,7 + 6&,)
07 ~ Jo0% + JO0%,, since f(Z*,7") = 0.
By linearity, 6Z(t) = AeM. So
M = (Jo+ e NI A,
and so
det{Jo+e NI, =M} =0

is an eigenvalue problem. We look to the characteristic equation. Unlike the
ODE case, a DDE characteristic equation is not a polynomial in A, but what’s
called a “quasi-polynomial.”

If Re{A} > 0 for any solution A (and there are generally an infinite number
of solutions!), then the fixed point #* is unstable.

Delays, in other words, can destabilize otherwise stable fixed points.

Example — Linear system with delay

& =ax+by(t—T)
y=cx +dy

A fixed point exists at the origin.
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Eigenvalue problem:

No delay (7 =0)

M= %(a +d+/atd?—4(ad—b)

Assume det = ad — bc > 0. If a < 0,d < 0, we cannot have an unstable cycle.
(i.e., tr < 0)
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Finite delay (7 > 0)

For simplicity, we consider a short delay, with A\7 << 1.

M —(a+d)A+ad—be(l1 —A1) =0
AN —(a+d—ber)A+ad —bec=0

(This corresponds to a change from trace — trace — ber.) And so,

1
M2 = §(a +d —beh £ /(a4 d + ber)? — 4(ad — be))

If a+d—ber > 0,Re{A12} > 0. So even if a < 0,d < 0, a delay 7 can make
a stable cycle unstable. In practice, delays are often used in biology along with
negative feedback to produce oscillations, e.g. circadian rhythms.



