
Linear Algebra

Matrices

m × n matrix A =







a11 a12 · · · a1n

...
...

am1 am2 · · · amn






, the “transpose” AT =











a11 · · · am1

a12

...
a1m











,

where the transpose interchanges columns and rows. If m = n, then A is called
“square”.

Matrix multiplication

If A is a m×n matrix and B is a n× l matrix, then AB is a m× l matrix where

(AB)ij =

n
∑

k=1

aikbkj .

We can think of this as dot products of vectors:

AB =











~a1 →
~a2 →

...
~am →











(

~b1
~b2 · · · ~bl

↓ ↓ ↓

)

(AB)ij = ~ai ·~bj = ~aT~b.

Identity matrix

square matrix I =























1
1

1
0

. . .

0
1

1
1























.

I is the “identity matrix” because

AI = A

IA = A,

for all matrices A.

Inverse of a square matrix

AA−1 = A−1A = I.

Note that (A−1)−1 = A. Finding the inverse of a matrix is slow in practice. In
general:

A−1 =
1

|A|
(Cij)

T =
1

|A|









C11 C21 · · ·

C12

. . .
... Cji









,
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where |A| = det A. Therefore A−1 is one over the determinant of A times the
transpose of the cofactor matrix (aka the “adjoint of A”).

Cij = (−1)i+jMij ,

where the minor Mij is the determinant of the submatrix obtained from A by
deleting row i and column j.

Determinants of square matrices

Eg. 2 × 2 matrix:

det

(

a b
c d

)

= ad − bc.

The determinant of larger matrices can be defined by induction:

|A| = det A =

n
∑

j=1

aij(−1)i+jMij ,

where as above Mij is the determinant of the submatrix formed by A without
row i and column j:

A =







a11 a12 · · · a1n

a21

...

(

submatrix “11”
)






, so that |A| = a11M11 − a12M12 + . . .

Eg. 3 × 3 matrix:

det





i j k
a b c
d e f



 = i(bf − ce) − j(af − cd) + k(ae − bd).

Eg. Inverse of a 2 × 2 matrix:

A =

(

a b
c d

)

A−1 =
1

|A|

(

C11 C21

C12 C22

)

=
1

|A|

(

M11 −M21

−M12 M22

)

=
1

|A|

(

d −b
−c a

)

=
1

ad − bc

(

d −b
−c a

)

.

Check:

A−1A =
1

ad − bc

(

d −b
−c a

)(

a b
c d

)

=
1

ad − bc

(

ad − bc 0
0 ad − bc

)

=

(

1 0
0 1

)

= I X

Linear independence

c1~v1 + c2~v2 + c3~v3 + · · · + cn~vn = 0 ⇔ c1 = c2 = · · · = cn = 0.

If n vectors are not linearly independent, then they span a subspace of dimension
< n. Eg. Two vectors ~v1 and ~v2 are linearly dependent if and only if they are
multiples of each other: ~v1 = a~v2. In this case ~v1 +~v2 only span a 1 dimensional
subspace.
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Figure 1: Linearly dependent vectors

Orthogonality

Two vectors are orthogonal if ~x · ~y = 0.

~x =

(

1
2

)

, ~y =

(

4
−2

)

: ~x · ~y = 1 · 4 + 2(−2) = 0.

Orthogonal vectors are “perpendicular”.

Figure 2: Orthogonal vectors

Eigenvalues and eigenvectors of symmetric matrices

Eigen means characteristic, so these are also sometimes called “characteristic”
values and vectors. Eigenvalues and vectors are defined and related by the
equation

A~v = λ~v,

where ~v is an eigenvector and λ is an eigenvalue. (A consequence of this defini-
tion is that if ~v is an eigenvector, then so is c~v.)

To find eigenvalues, we use the theorem

(A − λI)~v = 0 ⇔ det(A − λI) = 0.

This follows from a fact which is good to know: det X =
∏

i λi. Similarly,
tr X =

∑

i λi.
We can therefore find eigenvalues by solving

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣











a11 − λ a12

a21 a22 − λ
· · ·

...
. . .

ann − λ











∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

which is an nth order polynomial in λ, with n “roots”, i.e. solutions for λ (these
are either real or complex conjugate pairs).

Once a λi is known, A~v = λi~v gives a set of linear equations which can be
solved for the associated eigenvector ~vi.

Diagonalization

If A is an n×n matrix with n distinct eigenvalues λ1, λ2, . . . , λn and associated
eigenvectors ~vi, then let

U =

(

~v1 ~v2 · · · ~vn

↓ ↓ ↓

)

,
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where the eigenvectors ~v are the columns of U . Now

AU = A(~v1, ~v2, . . . , ~vn)

= (A~v1, A~v2, . . . , A~vn)

= (λ1~v1, λ2~v2, . . . , λn~vn)

= U











λ1

λ2

0

0
. . .

λn











= UD,

where D is the diagonal matrix of eigenvalues. Manipulating the expression
AU = UD yields the identity

A = UDU−1.

This is the eigen decomposition theorem, and it is an example of a similarity
transform.

When A is a symmetric matrix, i.e., when A = AT , then it is possible to
make the ~vs orthonormal, in which case

U−1 = UT ,

so that
A = UDUT .

PCA is equivalent to diagonalization of a particular symmetric matrix — the
covariance matrix.

The eigendecomposition allows some nice results:

A2 = AA = (UDU−1)(UDU−1) = UDDU−1 = UD2U−1 = U











λ2
1

λ2
2

. . .

λ2
n











U−1,

and in the same way

Am = UDmU−1 = U











λm
1

λm
2

. . .

λm
n











U−1.

So if we known the eigenvalues of A, we immediately know the eigenvalues of
Am. In particular,

A−1 = (UDU−1)−1 = (U−1)−1D−1U−1 = UD−1U−1.

It is easy to check that

A−1A = (UD−1U−1)(UDU−1) = UD−1DU−1 = UU−1 = I X

Therefore

A−1 = U











1/λ1

1/λ2

. . .

1/λn











U−1.
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