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Microarray review

Data per array: ∼ 10 000 genes, I
(green)
i , I

(red)
i . With X ∼ 100 arrays, this yields

∼ 1 000 000+ data points!

The expression matrix has entries of the form log2

(

I
(green)
ij

I
(red)
ij

)

:

X =









~aj

↓
~gi →









,

where the ith row ~gi of the m rows is the transcriptional response of the gene i,
and where the jth column ~aj of the n columns is the expression profile assay j.
This is an m×n matrix, where the number of rows m ∼ 10 000 and the number
of columns n ∼ 100.

Example

Assays taken every 10 minutes after addition of some compound (nutrient, poi-
son, signal molecule) — how to characterize the response of the genes? For any

log2
I(t)
I(0)

20015010050

−2

2

t

Figure 1: Noisy genes

individual gene, it may be impossible to see the signal through the noise. Indi-
vidual genes may respond with a superposition of different patterns and noise.
How to extract the important patterns from the noise? We will use SVD and

1



PCA to analyze the expression matrix X. But first we need to learn (or review)
some linear algebra, so we can manipulate matrices like X.

Linear Algebra

Matrices

m × n matrix A =







a11 a12 · · · a1n

...
...

am1 am2 · · · amn






, the “transpose” AT =











a11 · · · am1

a12

...
a1m











,

where the transpose interchanges columns and rows. If m = n, then A is called
“square”.

Matrix multiplication

If A is a m×n matrix and B is a n× l matrix, then AB is a m× l matrix where

(AB)ij =

n
∑

k=1

aikbkj .

We can think of this as dot products of vectors:

AB =











~a1 →
~a2 →

...
~am →











(

~b1
~b2 · · · ~bl

↓ ↓ ↓

)

(AB)ij = ~ai ·~bj = ~aT~b.

Identity matrix

square matrix I =























1
1

1
0

. . .

0
1

1
1























.

I is the “identity matrix” because

AI = A

IA = A,

for all matrices A.
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Inverse of a square matrix

AA−1 = A−1A = I.

Note that (A−1)−1 = A. Finding the inverse of a matrix is slow in practice. In
general:

A−1 =
1

|A|
(Cij)

T =
1

|A|









C11 C21 · · ·

C12
. . .

... Cji









,

where |A| = detA. Therefore A−1 is 1/detA times the transpose of the cofactor
matrix (aka the “adjoint of A”).

Cij = (−1)i+jMij ,

where the minor Mij is the determinant of the submatrix obtained from A by
deleting row i and column j.

Determinants of square matrices

Example 2 × 2 matrix:

det

(

a b
c d

)

= ad − bc.

The determinant of larger matrices can be defined by induction. Example) 3×3
matrix:

det





i j k
a b c
d e f



 = i(bf − ce) − j(af − cd) + k(ae − bd).

More generally,

|A| = detA =
n

∑

j=1

aij(−1)i+jMij ,

where as above Mij is the determinant of the submatrix formed by A without
row i and column j:

A =







a11 a12 · · · a1n

a21

...

(

submatrix “11”
)






, so that |A| = a11M11 − a12M12 + . . .

Example: Inverse of a 2 × 2 matrix

A =

(

a b
c d

)

A−1 =
1

|A|

(

C11 C21

C12 C22

)

=
1

|A|

(

M11 −M21

−M12 M22

)

=
1

|A|

(

d −b
−c a

)

=
1

ad − bc

(

d −b
−c a

)

.
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Check:

A−1A =
1

ad − bc

(

d −b
−c a

)(

a b
c d

)

=
1

ad − bc

(

ad − bc 0
0 ad − bc

)

=

(

1 0
0 1

)

= I X

Linear independence

c1~v1 + c2~v2 + c3~v3 + · · · + cn~vn = 0 ⇔ c1 = c2 = · · · = cn = 0.

If n vectors are not linearly independent, then they span a subspace of dimension
< n. Eg. Two vectors ~v1 and ~v2 are linearly dependent if and only if they are
multiples of each other: ~v1 = a~v2. In this case ~v1 +~v2 only span a 1 dimensional

Figure 2: Linearly dependent vectors

subspace.

Orthogonality

Two vectors are orthogonal if ~x · ~y = 0.

~x =

(

1
2

)

, ~y =

(

4
−2

)

: ~x · ~y = 1 · 4 + 2(−2) = 0.

Orthogonal vectors are “perpendicular”.

~y

~x

Figure 3: Orthogonal vectors

Eigenvalues and eigenvectors of symmetric matrices

“Eigen” means characteristic, so these are also sometimes called “characteristic”
values and vectors. Eigenvalues and vectors are defined and related by the
equation

A~v = λ~v,
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where ~v is an eigenvector and λ is an eigenvalue. (A consequence of this defini-
tion is that if ~v is an eigenvector, then so is c~v.)

To find eigenvalues, we use the theorem

(A − λI)~v = 0 ⇔ det(A − λI) = 0.

This follows from a fact which is good to know: detX =
∏

i λi. Similarly,
tr X =

∑

i λi.
We can therefore find eigenvalues by solving

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣











a11 − λ a12

a21 a22 − λ
· · ·

...
. . .

ann − λ











∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

which is an nth order polynomial in λ, with n “roots”, i.e. solutions for λ (these
are either real or complex conjugate pairs).

Once a λi is known, A~v = λi~v gives a set of linear equations which can be
solved for the associated eigenvector ~vi.

Diagonalization

If A is an n×n matrix with n distinct eigenvalues λ1, λ2, . . . , λn and associated
eigenvectors ~vi, then let

U =

(

~v1 ~v2 · · · ~vn

↓ ↓ ↓

)

,

where the eigenvectors ~v are the columns of U . Now

AU = A(~v1, ~v2, . . . , ~vn)

= (A~v1, A~v2, . . . , A~vn)

= (λ1~v1, λ2~v2, . . . , λn~vn)

= U











λ1

λ2
0

0
. . .

λn











= UD,

where D is the diagonal matrix of eigenvalues. Manipulating the expression
AU = UD yields the identity

A = UDU−1.

This is the eigen-decomposition theorem, and it is an example of a similarity
transform.

When A is a symmetric matrix, i.e., when A = AT , then it is possible to
make the ~vs orthonormal, in which case

U−1 = UT ,

so that
A = UDUT .
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(Principal Component Analysis (PCA) is equivalent to diagonalization of a par-
ticular symmetric matrix — the covariance matrix.)

The eigendecomposition allows some nice results:

A2 = AA = (UDU−1)(UDU−1) = UDDU−1 = UD2U−1 = U











λ2
1

λ2
2

. . .

λ2
n











U−1,

and in the same way

Am = UDmU−1 = U











λm
1

λm
2

. . .

λm
n











U−1.

So if we known the eigenvalues of A, we immediately know the eigenvalues of
Am. In particular,

A−1 = (UDU−1)−1 = (U−1)−1D−1U−1 = UD−1U−1.

It is easy to check that

A−1A = (UD−1U−1)(UDU−1) = UD−1DU−1 = UU−1 = I X

Therefore

A−1 = U











1/λ1

1/λ2

. . .

1/λn











U−1.

Singular Value Decomposition (SVD)

1

v2

SVD

v1
s2

s1
A~v2

A~v1

A~b

~b

1

Figure 4: Singular Value Decomposition (SVD)

SVD is a generalization of diagonalization for non-symmetric matrices.
If A is an m × n matrix, then ∃U,D, V :

A = UDV T ,

6



where U is an m×m matrix with orthonormal columns and V is an n×n matrix
with orthonormal rows. D is an m × n diagonal matrix, where

D =











S1

S2

. . .

Sn











, S1 ≥ S2 ≥ · · · ≥ Sn ≥ 0.

These Si are the singular values.
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SVD and PCA II

Prof. Ned Wingreen
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Let’s see how we can first apply PCA and then SVD to extract information
about gene regulation from a gene expression matrix. Recall

X =

⎛

⎜

⎜

⎝

�aj

↓
�gi →

⎞

⎟

⎟

⎠

,

where the ith row �gi of the m rows is the transcriptional response of the gene i,
and where the jth column �aj of the n columns is the expression profile assay j.

Consider the expression profile for each assay. This will be the vector

�ak = (x1k, x2k, . . . , xmk).

Each assay is therefore associated with a point in the m-dimensional space of
genes. The graph, of course, shows only 2 dimensions of a m-dimensional space,

g1

�a2
g2

�a1

Figure 1: Gene space

but one can immediately see that there is a correlation between the expression of
gene g1 and g2. How can we find correlations among multiple genes? E.g. how
would we know if the expression of genes g1, g2, g37, and g64 are all correlated?
We can learn this from PCA and/or SVD.

First, center the data by subtracting out the mean value for each gene:

yik = xik − xi, where xi =
1
n

n
∑

k=1

xik,

the average having been taken over the n assays. This yields the vector �a′
k =

�ak − �x = (y1k, y2k, . . . , ymk).
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g1�a1

�a2

g2

Figure 2: Re-centered gene space

Notice in this example that even after subtracting out the means, the expres-
sion values for genes 1 and 2 are correlated over the set of assays. Biologically,
this suggests that genes 1 and 2 are coregulated. How can we quantify this?
In particular how can we recognize if many sets of genes are coregulated (or
counter-regulated)?

Graphically, we’d like to find the directions in gene space (weighed combi-
nations of genes) that best capture the observed correlations in the data.

How do we do this mathematically, allowing for many correlated genes?
Answer — these directions are the principal components of a particular matrix,
the covariance matrix. With n assays, this takes the form:

Cij =
1
n

n
∑

k=1

yikyjk =
1
n

n
∑

k=1

(xik − xi)(xjk − xj)

= E[(xi − xi)(xj − xj)] = E[xixj ] − xixj

= cov(xi, xj).

From the covariance matrix we can also define

cor(xi, xj) =
cov(xi, xj)

σiσj
,

the “correlation coefficient” of xi and xj (often called r), which satisfies −1 ≤
r ≤ 1.. If xi and xj are independent,

cov(xi, xj) = E[xixj ] − xixj = xixj − xixj = 0.

Two other easy relations are

cov(xi, xi) = E[(xi − xi)2] = σ2
i (cor(xi, xi) = r = 1)

cov(xi,−xi) = −σ2
i (cor(xi,−xi) = r = −1).

The covariance matrix is symmetric:

cov =

⎛

⎜

⎝

cov(x1, x1) cov(x2, x1) · · ·
cov(x1, x2)

...

⎞

⎟

⎠
.
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Diagonalizing the covariance matrix is called a “Principal Component Analysis.”

cov = UDUT =
(

�u1 �u2 · · · �um

↓ ↓ ↓
)

⎛

⎜

⎜

⎜

⎝

λ1

λ2

. . .
λm

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

�u1 →
�u2 →
...

�um →

⎞

⎟

⎟

⎟

⎠

,

where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. The �us are called orthonormal eigenvectors
called the “principal component vectors” and the λs, the eigenvalues of the
covariance matrix, are called “principal component values.”

The eigenvectors give the variance of the data along the principal component
directions, and the covariance between these directions is zero. So �u1 gives the
direction in which the data is most “stretched” and λ1 is the variance of the
data in this direction.

Notice that

Total variance of data =
∑

i

cov(xi, xi) = tr cov =
∑

k

λk

where we’ve used the fact that the trace of a square matrix is the sum of its
eigenvalues.

In terms of gene expression, �u1 gives the weighted set of genes that are most
strongly coregulated (or counter-regulated!), �u2 gives the second strongest set,
etc.

A plot of the eigenvalues λi is order from largest to smallest may reveal a
transition from signal to noise:

total variance
Fraction of

.3

.2

.1

signal

noise

Figure 3: Eigenvalue plot

Dimension reduction

If the PCA separates signal from noise, we can “clean up” data by considering
projection of data onto principal components. For each assay:

�ak = (x1k, x2k, . . . , xmk) = �a′
k + �x,
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g1

ỹ41

ỹ51

ỹ21

ỹ31

ỹ11

g2

Figure 4: Values of ỹ

we can find the projection of �a′
k onto the principal components:

ỹk1 = �u1 · �a′
k

ỹk2 = �u2 · �a′
k

...

Keeping only the first few values of ỹ for each assay accounts for most of the
signal in the data.

Plotting the assay data projected onto the first few principal components
can also reveal correlations beyond linear. Sometimes, ỹ1 and ỹ2 will show no
additional correlations (Figure 5), but sometimes correlations will be apparent
even though 〈ỹ1, ỹ2〉 = 0 (Figure 6).

ỹ1

ỹ2

Figure 5: Uncorrelated

Other applications of PCA in biology:

• Molecular dynamics — reconstructing flexible modes of biomolecules from
snapshots

• Synthetic lethality

• Immunology — antigen-antibody

• Residue-residue potentials

• Almost any large data set...
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ỹ1

ỹ2

Figure 6: Correlated

SVD

By summing over assays to produce the covariance matrix, we have thrown away
information. Imagine that the assays were taken at fixed time intervals — how
can we recapture the time dependence of the gene expression?

Any one gene may have a noisy time course of expression:

t

x1t

Figure 7: Single gene expression over time

But maybe there is a coherent response that contributes a little bit to many
genes:

This coherent signal will contribute to the correlation of many genes, and so
these genes will co-vary. So these genes will form a principal component in the
PCA of the covariance matrix.

So after performing a PCA, imagine putting time labels back on the data:
By finding the principal components and plotting the projections on these

components for each assay vs. time, we reconstruct the coherent signal hidden
in noisy data. SVD allows us to do this in one step:

m × n matrix X = UDV T

=
(

�u1 �u2 · · · �um

↓ ↓ ↓
)

⎛

⎜

⎜

⎜

⎝

S1

S2

. . .
Sn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

�v1 →
�v2 →
...

�vn →

⎞

⎟

⎟

⎟

⎠

,

where S1 ≥ S2 ≥ · · · ≥ Sn ≥ 0. In this decomposition, the �us represent corre-
lated sets of genes and the �vs represent coherent patterns of genes expression.
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t

many genes slightly negative

many genes slightly positive

x

Figure 8: Overall x signal

3

g1

g2

7

6

5 1

2
4

Figure 9: Relabeled data

The singular values S are simply related to the principal components of the
covariance matrix:

λk = S2
k.

The matrix constructed from the leading l singular values, and the associated
right {�v} and left {�u} singular vectors is the best rank l approximation to X,
that is, choosing

X(l) =
l

∑

k=1

�ukSk�v
T
k

minimizes
∑

i,j

|xij − x
(l)
ij |2.
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t

ỹ1

Figure 10: Explicit time plot
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