Weakly Nonlinear Oscillators: “Cultural” Bonus
(no homeworks or exams on this topic)

Prof. Ned Wingreen
MOL 410/510

Introduction
We deal with equations of the form
¥+x+eh(z,i)=0,

where 0 < € << 1 and h(z, &) is smooth.
Example — van der Pol oscillator

Fte(@®—Di4+2=0, 2(0)=1,%0)=0

for 0 < € << 1 is a weakly nonlinear oscillator.
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Figure 1: van der Pol oscillator with € = 0.1.

This oscillator slowly approaches the limit cycle, a nearly circular orbit.
Clearly, we have two time scales:

e single cycle t ~ 1

e change of amplitude ¢t ~ 1/¢
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We should be able to separate the time scales to approximately solve behavior
of the van der Pol oscillator for 0 < ¢ << 1, but we can’t just expand the
equation in €.
What’s wrong with simple ¢ expansion?
Consider the weakly damped linear oscillator

i+2i+2x=0, z(0)=0,%0)=1.

We could try
z(t) = 2o(t) +ex1(t) + O(e?),

But, as a shortcut, since the oscillator is linear we can solve it exactly as an
eigenvalue problem (i.e., x(t) = Ae*?! 4+ Ber2?):

z(te) = (1 — )7 2e % sin[(1 — £2)1).

If we solve by direct expansion ¢, our solution will approximate

et =1—ct+ 0(e?).

Figure 2: € expansion. Solid curve - exact solution. Dashed curve - € expansion.

This is only good for et << 1, and fails completely for et > 1! We need to
take advantage of the two time scales.

Two-Timing

e Assume solution depends explicitly on two time scales: ¢, the regular time
scale, and T = &t, the long time scale, so we have x(t,T). This makes
sense in terms of van der Pol behavior: the amplitude depends on T', the
phase of the orbit depends on t¢.

e Assume perturbation expansion

e(t,T) = 2o(t,T) + ez, (£, T) + O(2).



Our approximate solution will be (¢, 7T"), and we will use the constraint
that x1(¢,T) must remain finite.

e Substitute expansion for x into the original equation. Use the chain rule
for derivatives:
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Since T = t,2L = z. Therefore
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van der Pol
We substitute this just-derived equation into the van der Pol equation
Fte(@®—Di+2=0, 2(0)=1,20)=0

and collect powers of . Since we can use any small number for €, equations
must be satisfied order by order in . We’ll only work to 1st order, but we’ll see
that this will work quite well!
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The O(1) equation is a simple harmonic oscillator. So the most general solution
is

xo(t,T) = A(T) cos(t) + B(T) sin(t)
or, equivalently
xo(t,T) = r(T) cos(t + ¢(T)),

where r is the radius in the phase plane and r(T) and ¢(T') are slowly varying
amplitude and phase of oscillation. This gives a whole family of solutions -
which one is the right one? We substitute this solution for z¢(¢,7T) into the
O(e) equation, noting first that:

—(x% -1) 5(‘;0 = 2 cosz(t + ¢) — 1rsin(t + ¢)
0? 0
—2 aTgl = 2 [rsin(t + ¢)]

=2[r'sin(t + ¢) + r¢’ cos(t + ¢)].
We conclude that
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52 + 21 = [r? cos®(t + ¢) — 1]rsin(t + ¢)

+ 2[r"sin(t + @) + r¢’ cos(t + ¢)]

How does this define r(T') and ¢(T")? The solution for 27 must remain finite, so
there can be no driving terms on the right-hand side ~ sin(t) or ~ cos(t) which



will cause z1 to diverge (i.e., no resonant driving on the right-hand side implies
no secular terms ~ tsint, tcost in 7). So we expand the right-hand side:

use cos?(t + ¢)sin(t + ¢) = i[sin(t + &) +sin 3(t + ¢)],
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W—l—xl = [2r -t | sin(t + ¢)
+ [2r¢'] cos(t + ¢)
+ 37"3 sin3(t + ¢).

So 2r" —r + 1r® = 0. Since 2r¢’ = 0, we also have ¢’ =0. Recall the initial
conditions z(0) = 1,£(0) = 0. We have

r(0) = \/22(0) + #2(0) = 1

#(0) = tan~! igg% =0

Since ¢’ =0, ¢(T) = 0. So we need only solve
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So

x(t,e) = cost + O(e),

(1+3e-T)1/2
where T' = et. Note that as T — oo, z(t,e) — 2cost.

We have used our intuition that the solution to the van der Pol equation for
€ << 1 has two distinct time scales to obtain an excellent approximate solution.
This is a theme in applied math — find a method that implements “common
sense.”



Figure 3: Two-timing approximation. Solid curve - exact solution. Dashed curve
- two-timing approximate solution. The two curves are almost indistinguishable.



