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Introduction

We deal with equations of the form

ẍ+ x+ εh(x, ẋ) = 0,

where 0 < ε << 1 and h(x, ẋ) is smooth.

Example — van der Pol oscillator

ẍ+ ε(x2 − 1)ẋ+ x = 0, x(0) = 1, ẋ(0) = 0

for 0 < ε << 1 is a weakly nonlinear oscillator.
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Figure 1: van der Pol oscillator with ε = 0.1.

This oscillator slowly approaches the limit cycle, a nearly circular orbit.
Clearly, we have two time scales:

• single cycle t ∼ 1

• change of amplitude t ∼ 1/ε
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We should be able to separate the time scales to approximately solve behavior
of the van der Pol oscillator for 0 < ε << 1, but we can’t just expand the
equation in ε.

What’s wrong with simple ε expansion?

Consider the weakly damped linear oscillator

ẍ+ 2εẋ+ x = 0, x(0) = 0, ẋ(0) = 1.

We could try
x(t) = x0(t) + εx1(t) +O(ε2),

But, as a shortcut, since the oscillator is linear we can solve it exactly as an
eigenvalue problem (i.e., x(t) = Aeλ1t +Beλ2t):

x(t, ε) = (1− ε2)−1/2e−εt sin[(1− ε2)t].

If we solve by direct expansion ε, our solution will approximate

e−εt = 1− εt+O(ε2).
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Figure 2: ε expansion. Solid curve - exact solution. Dashed curve - ε expansion.

This is only good for εt << 1, and fails completely for εt > 1! We need to
take advantage of the two time scales.

Two-Timing

• Assume solution depends explicitly on two time scales: t, the regular time
scale, and T = εt, the long time scale, so we have x(t, T ). This makes
sense in terms of van der Pol behavior: the amplitude depends on T , the
phase of the orbit depends on t.

• Assume perturbation expansion

x(t, T ) = x0(t, T ) + εx1(t, T ) +O(ε2).
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Our approximate solution will be x0(t, T ), and we will use the constraint
that x1(t, T ) must remain finite.

• Substitute expansion for x into the original equation. Use the chain rule
for derivatives:

dx

dt
=

∂x0

∂t
+

∂x0

∂T

∂T

∂t
+ ε(

∂x1

∂t
+

∂x1

∂T

∂T

∂t
) + . . .

Since T = εt,∂T∂t = ε. Therefore

dx

dt
=

∂x0

∂t
+ ε(

∂x0

∂T
+

∂x1

∂t
) +O(ε2)

d2x

dt2
=

∂2x0

∂t2
+ ε(2

∂2x0

∂T∂t
+

∂2x1

∂t2
) +O(ε2)

van der Pol

We substitute this just-derived equation into the van der Pol equation

ẍ+ ε(x2 − 1)ẋ+ x = 0, x(0) = 1, ẋ(0) = 0

and collect powers of ε. Since we can use any small number for ε, equations
must be satisfied order by order in ε. We’ll only work to 1st order, but we’ll see
that this will work quite well!

O(1) :
∂2x0

∂t2
+ x0 = 0

O(ε) : 2
∂2x0

∂T∂t
+

∂2x1

∂t2
+ (x2

0 − 1)
∂x0

∂t
+ x1 = 0

The O(1) equation is a simple harmonic oscillator. So the most general solution
is

x0(t, T ) = A(T ) cos(t) +B(T ) sin(t)

or, equivalently
x0(t, T ) = r(T ) cos(t+ φ(T )),

where r is the radius in the phase plane and r(T ) and φ(T ) are slowly varying
amplitude and phase of oscillation. This gives a whole family of solutions -
which one is the right one? We substitute this solution for x0(t, T ) into the
O(ε) equation, noting first that:

−(x2
0 − 1)

∂x0

∂t
= [r2 cos2(t+ φ)− 1]r sin(t+ φ)

− 2
∂2x0

∂T∂t
= 2

∂

∂T
[r sin(t+ φ)]

= 2[r′ sin(t+ φ) + rφ′ cos(t+ φ)].

We conclude that

∂2x1

∂t2
+ x1 = [r2 cos2(t+ φ)− 1]r sin(t+ φ)

+ 2[r′ sin(t+ φ) + rφ′ cos(t+ φ)]

How does this define r(T ) and φ(T )? The solution for x1 must remain finite, so
there can be no driving terms on the right-hand side ∼ sin(t) or ∼ cos(t) which
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will cause x1 to diverge (i.e., no resonant driving on the right-hand side implies
no secular terms ∼ t sin t, t cos t in x1). So we expand the right-hand side:

use cos2(t+ φ) sin(t+ φ) =
1

4
[sin(t+ φ) + sin 3(t+ φ)],

so

∂2x1

∂t2
+ x1 = [2r′ − r +

1

4
r3] sin(t+ φ)

+ [2rφ′] cos(t+ φ)

+
1

4
r3 sin 3(t+ φ).

So 2r′ − r + 1
4
r3 = 0. Since 2rφ′ = 0, we also have φ′ =0. Recall the initial

conditions x(0) = 1, ẋ(0) = 0. We have

r(0) =
√

x2(0) + ẋ2(0) = 1

φ(0) = tan−1 ẋ(0)

x(0)
= 0

Since φ′ = 0, φ(T ) = 0. So we need only solve

r′ =
∂r

∂T
=

1

2
r −

1

8
r3, r(0) = 1

∫ T

0

dT =

∫ r

1

dr
1
2
r − 1

8
r3

=

∫ r

1

8dr

r(4− r2)

T =

∫ r

1

2dr

r
+

∫ r

1

2rdr

4− r2

T = 2 log r|
r
1 − log(4− r2)

∣

∣

r

1

T = 2 log r − log(4− r2) + log 3

T − log 3 = log
r2

4− r2

eT−log 3 =
r2

4− r2

4
eT

3
− r2

eT

3
− r2 = 0

r2(1 +
1

3
eT ) =

4

3
eT

r2 = 4
1/3eT

1 + 1/3eT
=

4

1 + 3e−T

r(T ) =
2

(1 + 3e−T )1/2
.

So

x(t, ε) =
2

(1 + 3e−T )1/2
cos t+O(ε),

where T = εt. Note that as T → ∞, x(t, ε) → 2 cos t.
We have used our intuition that the solution to the van der Pol equation for

ε << 1 has two distinct time scales to obtain an excellent approximate solution.
This is a theme in applied math — find a method that implements “common
sense.”
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Figure 3: Two-timing approximation. Solid curve - exact solution. Dashed curve
- two-timing approximate solution. The two curves are almost indistinguishable.
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