Limit Cycles II

Prof. Ned Wingreen

MOL 410/510

How to prove a closed orbit exists?

- numerically
- Poincaré-Bendixson Theorem: If

1. R is a closed, bounded subset of the plane
2. $\dot{\vec{x}}=\vec{f}(\vec{x})$ is a continuously differentiable vector field on an open set containing R
3. R does not contain any fixed points
4. There exists a trajectory C that is "confined" in R

Then either C is a closed orbit or it spirals towards a closed orbit as $t \rightarrow \infty$. Either way, R contains a closed orbit.

Figure 1: Poincaré-Bendixson Theorem

Example - Glycolytic oscillations

Background

Organisms may obtain energy by breaking down sugar. Glycolysis can proceed in an oscillatory fashion. In a simple model with

$$
\begin{aligned}
& x=\text { concentration of ADP (adenosine diphosphate) } \\
& y=\text { concentration of F6P (fructose-6-phosphate) }
\end{aligned}
$$

we have

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

Figure 2: Glycolysis model

Starting from Kinetic Equations

A brief aside on deriving dimensionless equations from kinetic equations - by rescaling chemical concentrations and time by appropriate units, one can generally reduce the number of parameters. In our case, the underlying kinetic equations are

$$
\begin{aligned}
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t} & =-\mu[\mathrm{A}]+\alpha[\mathrm{F}]+\gamma[\mathrm{A}]^{2}[\mathrm{~F}] \\
\frac{\mathrm{d}[\mathrm{~F}]}{\mathrm{d} t} & =\beta-\alpha[\mathrm{F}]-\gamma[\mathrm{A}]^{2}[\mathrm{~F}]
\end{aligned}
$$

which has four (dimensionful) parameters, α, β, γ, and μ. We'll start by rescaling time. Divide by μ, which is a rate, to give

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d}(\mu t)}=\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t^{\prime}}=-[\mathrm{A}]+(\alpha / \mu)[\mathrm{F}]+(\gamma / \mu)[\mathrm{A}]^{2}[\mathrm{~F}] \\
& \frac{\mathrm{d}[\mathrm{~F}]}{\mathrm{d}(\mu t)}=\frac{\mathrm{d}[\mathrm{~F}]}{\mathrm{d} t^{\prime}}=\beta / \mu-(\alpha / \mu)[\mathrm{F}]-(\gamma / \mu)[\mathrm{A}]^{2}[\mathrm{~F}]
\end{aligned}
$$

where we have defined $t^{\prime}=\mu t$. Now, to eliminate the parameter γ / μ in front of the last term in each equation, while continuing to measure $[\mathrm{A}]$ and $[\mathrm{F}]$ in the same units, we'll rescale the concentrations $[\mathrm{A}]$ and $[\mathrm{F}]$ as

$$
\begin{aligned}
& {[\mathrm{A}]=(\mu / \gamma)^{1 / 2} x} \\
& {[\mathrm{~F}]=(\mu / \gamma)^{1 / 2} y,}
\end{aligned}
$$

which yields

$$
\begin{aligned}
& (\mu / \gamma)^{1 / 2} \frac{\mathrm{~d} x}{\mathrm{~d} t^{\prime}}=-(\mu / \gamma)^{1 / 2} x+(\alpha / \mu)(\mu / \gamma)^{1 / 2} y+(\gamma / \mu)(\mu / \gamma)^{3 / 2} x^{2} y \\
& (\mu / \gamma)^{1 / 2} \frac{\mathrm{~d} y}{\mathrm{~d} t^{\prime}}=\beta / \mu-(\alpha / \mu)(\mu / \gamma)^{1 / 2} y-(\gamma / \mu)(\mu / \gamma)^{3 / 2} x^{2} y,
\end{aligned}
$$

and simplifies to

$$
\begin{aligned}
& \dot{x}=-x+(\alpha / \mu) y+x^{2} y \\
& \dot{y}=(\gamma / \mu)^{1 / 2}(\beta / \mu)-(\alpha / \mu) y-x^{2} y .
\end{aligned}
$$

These are our original, dimensionless equations, and now we can see exactly how the two remaining dimensionless constants a and b depend on the underlying rates in the kinetic equations: $a=\alpha / \mu$ and $b=(\gamma / \mu)^{1 / 2}(\beta / \mu)$.

Intuition

Since rate of $\mathrm{F} 6 \mathrm{P} \rightarrow \mathrm{ADP}$ increases with ADP , we can get "overshooting," i.e. F6P gets depleted, ADP has no source so it also gets depleted, followed by slow recovery of F6P. This is a possible oscillator, but how can we prove a limit cycle?

Find the nullclines

Figure 3: Nullclines sketch

$$
\begin{array}{ll}
\dot{x}=0 & \Longrightarrow-x+a y+x^{2} y=0 \\
& \Longrightarrow y=\frac{x}{a+x^{2}} \\
\dot{y}=0 & \Longrightarrow b-a y-x^{2} y=0 \\
& \Longrightarrow y=\frac{b}{a+x^{2}}
\end{array}
$$

Solve for fixed point: $x=b, y=\frac{b}{a+b^{2}}$.
Does this prove a limit cycle? NO! We could have a stable fixed point at P, or trajectories could spiral out to ∞. Indeed, at the intersection of the nullclines $\dot{x}=\dot{y}=0$, so P is a fixed point.

Fixed point

We can't apply Poincaré-Bendixson yet because of the fixed point. We can use P-B, though, if the fixed point is a repeller, because then our trapping region is just $R \backslash P$. Analyze stability of fixed point P by linearizing the differential equations around the fixed point:

$$
\text { Jacobian } A=\left(\begin{array}{ll}
\frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} \\
\frac{\partial \dot{\dot{y}}}{\partial x} & \frac{\partial y}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
-1+2 x y & a+x^{2} \\
-2 x y & -\left(a+x^{2}\right)
\end{array}\right)
$$

Fixed point $P: x^{*}=b, y^{*}=\frac{b}{a+b^{2}}$

$$
A(P)=\left(\begin{array}{cc}
-1+2 \frac{b^{2}}{a+b^{2}} & a+b^{2} \\
-\frac{2 b^{2}}{a+b^{2}} & -\left(a+b^{2}\right)
\end{array}\right)
$$

$$
\begin{aligned}
\Delta & =\operatorname{det} A(P)=a+b^{2}>0 \\
\tau & =\operatorname{tr} A(P)=-1+2 \frac{b^{2}}{a+b^{2}}-\left(a+b^{2}\right)=-\frac{b^{4}+(2 a-1) b^{2}+\left(a+a^{2}\right)}{a+b^{2}}
\end{aligned}
$$

In general, we can quickly determine the stability of a fixed point if we know Δ and τ, i.e. the determinant and trace of the Jacobian at the fixed point, because the eigenvalues are given by

$$
\lambda_{J}=\frac{1}{2}\left(\tau \pm \sqrt{\tau^{2}-4 \Delta}\right) .
$$

(It's worth remembering that for any square matrix $\Delta=\Pi_{i} \lambda_{i}$ and $\tau=\Sigma_{i} \lambda_{i}$.)

Figure 4: Stability and types of fixed points
The fixed point P is unstable for $\tau>0$, stable for $\tau<0$. The dividing line $\tau=0$ is at

$$
b^{2}=\frac{1}{2}(1-2 a \pm \sqrt{1-8 a})
$$

Figure 5: Glycolysis analysis

Figure 6: Trapping region
Find a trapping region
Examine Figure 6 (page 6). The vectors for $\dot{x}=0$ or $\dot{y}=0$ follow from the last figure. But what about the circled vector?

Circled vector is trapping if $\dot{y}<-\dot{x}$ (i.e. $\dot{x}+\dot{y}<0$) along the boundary:

$$
\dot{x}+\dot{y}=-x+b \Longrightarrow \dot{x}+\dot{y}<0 \text { if } x>b,
$$

so the dashed lines do define a trapping region.

A model for glycolysis

We can conclude that our glycolytic model functions as in Figure 5 (page 5).Does this make sense? If a is too big, then $\mathrm{F} 6 \mathrm{P} \rightarrow \mathrm{ADP}$ even for low levels of ADP, so there's no chance for a pool of F6P to accumulate. At a fixed a, if b is too small then new F6P will "instantly" turn into ADP and get used up, so the system is locked in a low flux state. If b is too big, ADP will never be low enough, so the system is locked into a high flux state.

How to characterize a limit cycle?

- (nearly) harmonic oscillator vs relaxation oscillator
- period
- amplitude

Example - van der Pol oscillator

$$
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=0
$$

Damped harmonic oscillator: ordinary damping for $|x|>1$, "negative" damping for $|x|<1$. Large amplitude oscillations will decay, but small amplitude oscillations will get pumped up. Like a parent pushing a child on a swing...

It can be proven that the van der Pol oscillator has a single, stable limit cycle for each $\mu>0$.
van der Pol as a relaxation oscillator $(\mu \gg 1)$

$$
\begin{aligned}
& \ddot{x}+\mu\left(x^{2}-1\right) \dot{x}=\frac{\mathrm{d}}{\mathrm{~d} t}\left[\dot{x}+\mu\left(\frac{1}{3} x^{3}-x\right)\right] \\
& \text { Let } F(x)=\frac{1}{3} x^{3}-x, \omega=\dot{x}+\mu F(x)
\end{aligned}
$$

The van der Pol equation implies

$$
\dot{\omega}=-x, \quad \dot{x}=\omega-\mu F(x)
$$

and if we let $y=\omega / \mu$,

$$
\begin{array}{ll}
\dot{x}=\mu[y-F(x)] & \leftarrow \text { fast } \\
\dot{y}=-\frac{1}{\mu} x & \leftarrow \text { slow }
\end{array}
$$

Nullclines

So there are two separated timescales:

$$
\begin{array}{ll}
\text { "crawls" } & \Delta t \sim \mu \\
\text { "jumps" } & \Delta t \sim 1 / \mu
\end{array}
$$

Period

The period of relaxation oscillator is dominated by crawls. For van der Pol, by symmetry $T \approx 2 \int_{t_{A}}^{t_{B}} \mathrm{~d} t$.

On the slow branches:

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} t} \approx \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{\text {Nullcline }} \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} F(x)}{\mathrm{d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\left(x^{2}-1\right) \frac{\mathrm{d} x}{\mathrm{~d} t}
$$

But

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{1}{\mu} x
$$

Figure 7: van der Pol nullclines
so

$$
-\frac{1}{\mu} x \approx\left(x^{2}-1\right) \frac{\mathrm{d} x}{\mathrm{~d} t}
$$

and

$$
\mathrm{d} t \approx-\frac{\mu\left(x^{2}-1\right)}{x} \mathrm{~d} x
$$

Therefore:

$$
\begin{array}{rlrl}
T & =2 \int_{t_{A}}^{t_{B}} \mathrm{~d} t \approx 2 \int_{x_{A}}^{x_{B}}-\frac{\mu\left(x^{2}-1\right)}{x} \mathrm{~d} x & \\
& =\left.2 \mu\left[\frac{x^{2}}{2}-\ln x\right]\right|_{1} ^{2} & & \text { since }\left(x_{A}=2, x_{B}=1\right) \\
& =\mu(3-2 \ln 2) \sim \mu & \checkmark
\end{array}
$$

