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How to prove a closed orbit exists?

e numerically
e Poincaré-Bendixson Theorem: If

1. R is a closed, bounded subset of the plane

2. %= f (Z) is a continuously differentiable vector field on an open set
containing R

3. R does not contain any fixed points

4. There exists a trajectory C that is “confined” in R

Then either C is a closed orbit or it spirals towards a closed orbit as
t — oo. Either way, R contains a closed orbit.

c

Figure 1: Poincaré-Bendixson Theorem

Example — Glycolytic oscillations

Background

Organisms may obtain energy by breaking down sugar. Glycolysis can proceed
in an oscillatory fashion. In a simple model with

x = concentration of ADP (adenosine diphosphate)

y = concentration of F6P (fructose-6-phosphate)



we have

& =—x+ay+ 2y
§=0b—ay—2’y
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Figure 2: Glycolysis model

Starting from Kinetic Equations

A brief aside on deriving dimensionless equations from kinetic equations - by
rescaling chemical concentrations and time by appropriate units, one can gen-
erally reduce the number of parameters. In our case, the underlying kinetic
equations are

% = —p[A] + ofF] + y[A]*[F]
% = 8 — a[F] — y[A]*[F]

which has four (dimensionful) parameters, «, 3, 7, and p. We'll start by rescal-
ing time. Divide by u, which is a rate, to give

m N dcgﬁ] = —[A] + (a/w)[F] + (v/w)[A][F)
;([MFt]) N dd[g] = 6/p— (a/wF] = (v/w)A][F],

where we have defined ¢’ = pt. Now, to eliminate the parameter v/p in front of
the last term in each equation, while continuing to measure [A] and [F] in the
same units, we’ll rescale the concentrations [A] and [F] as

[A] = (u/7)"*x
[F] = (u/7)""?y,

which yields

(M/V)I/Z% = (/N2 + (/W) (/) Py + (v 1) () 7)* Py

(/)25 = B (@ /i)y — (/)12



and simplifies to
&= —x+ (a/p)y + 2’y
= (/w2 (B/w) — (a/p)y — =°y.

These are our original, dimensionless equations, and now we can see exactly how
the two remaining dimensionless constants a and b depend on the underlying
rates in the kinetic equations: a = o/ and b = (y/u)"/2(8/ ).

Intuition

Since rate of F6P—ADP increases with ADP, we can get “overshooting,” i.e.
F6P gets depleted, ADP has no source so it also gets depleted, followed by slow
recovery of F6P. This is a possible oscillator, but how can we prove a limit cycle?

Find the nullclines

Y

Figure 3: Nullclines sketch
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Solve for fixed point: z =b, y = —2.

+
Does this prove a limit cycle? NO! We could have a stable fixed point at P,
or trajectories could spiral out to co. Indeed, at the intersection of the nullclines
=19 =0,so P is a fixed point.

Fixed point

We can’t apply Poincaré-Bendixson yet because of the fixed point. We can use
P-B, though, if the fixed point is a repeller, because then our trapping region
is just R\ P. Analyze stability of fixed point P by linearizing the differential
equations around the fixed point:

oz oz 2
Em —1 4 2zy a+x
dy | _
Jacobian A = (a;j gz> = ( 2y (a xz))

b
Fixed point P:x*:b7y*:m
—142 b2
apy - (T EE
a+b2 *(a‘i’b)
A=detA(P)=a+b*>>0
b b+ (2a — 1) + (a + a?)
=trA(P)=—-14+2—-—+ — ) = —
T = tr A(P) +2 s — (a4 ) P

In general, we can quickly determine the stability of a fixed point if we know
A and 7, i.e. the determinant and trace of the Jacobian at the fixed point,
because the eigenvalues are given by

1
AJ:i(Ti 7'2—4A).

(It’s worth remembering that for any square matrix A = II;\; and 7 = 3;\;.)
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Figure 4: Stability and types of fixed points

The fixed point P is unstable for 7 > 0, stable for 7 < 0. The dividing line
7=0Iis at

1
b = 5(1—2aj:\/1—8a)
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Figure 5: Glycolysis analysis

Figure 6: Trapping region

Find a trapping region

Examine Figure 6 (page 6). The vectors for £ = 0 or ¢ = 0 follow from the last
figure. But what about the circled vector?



Circled vector is trapping if §y < —& (i.e. &+ ¢ < 0) along the boundary:
t+y=—-x+b = t+y<0ifz>b,

so the dashed lines do define a trapping region.

A model for glycolysis

We can conclude that our glycolytic model functions as in Figure 5 (page 5).Does
this make sense? If a is too big, then F6P—ADP even for low levels of ADP, so
there’s no chance for a pool of F6P to accumulate. At a fixed a, if b is too small
then new F6P will “instantly” turn into ADP and get used up, so the system is
locked in a low flux state. If b is too big, ADP will never be low enough, so the
system is locked into a high flux state.



How to characterize a limit cycle?
e (nearly) harmonic oscillator vs relaxation oscillator
e period

e amplitude

Example - van der Pol oscillator

F+pa®—Di4+z=0

Damped harmonic oscillator: ordinary damping for |z| > 1,“negative” damp-
ing for |z| < 1. Large amplitude oscillations will decay, but small amplitude
oscillations will get pumped up. Like a parent pushing a child on a swing...

It can be proven that the van der Pol oscillator has a single, stable limit
cycle for each p > 0.

van der Pol as a relaxation oscillator (u >> 1)

d 3

P4 p(?—-1)i = T {chru(:l))x x)}

1 .
Let F(x) = gxs —z,w =&+ pF(x).
The van der Pol equation implies
w=-—x, &=w-—pF(x),

and if we let y = w/p,

& = ply — F(z)] — fast

. 1

y=—-——x «— slow
I

Nullclines

So there are two separated timescales:

“crawls” At~ p
“jumps” At~ 1/u

Period

The period of relaxation oscillator is dominated by crawls. For van der Pol, by
symmetry T = 2 ﬁj dt.
On the slow branches:

dy Jdy|  de_dF@)de o g de
dt 7 dr|gyeee 46 dz dt dt’
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Figure 7: van der Pol nullclines
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