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How to prove a closed orbit exists?

• numerically

• Poincaré-Bendixson Theorem: If

1. R is a closed, bounded subset of the plane

2. ~̇x = ~f(~x) is a continuously differentiable vector field on an open set
containing R

3. R does not contain any fixed points

4. There exists a trajectory C that is “confined” in R

Then either C is a closed orbit or it spirals towards a closed orbit as
t→∞. Either way, R contains a closed orbit.

R

P C

Figure 1: Poincaré-Bendixson Theorem

Example — Glycolytic oscillations

Background

Organisms may obtain energy by breaking down sugar. Glycolysis can proceed
in an oscillatory fashion. In a simple model with

x = concentration of ADP (adenosine diphosphate)

y = concentration of F6P (fructose-6-phosphate)
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we have

ẋ = −x + ay + x2y

ẏ = b− ay − x2y

ADPF6P xy

Figure 2: Glycolysis model

Starting from Kinetic Equations

A brief aside on deriving dimensionless equations from kinetic equations - by
rescaling chemical concentrations and time by appropriate units, one can gen-
erally reduce the number of parameters. In our case, the underlying kinetic
equations are

d[A]

dt
= −µ[A] + α[F] + γ[A]

2
[F]

d[F]

dt
= β − α[F]− γ[A]

2
[F]

which has four (dimensionful) parameters, α, β, γ, and µ. We’ll start by rescal-
ing time. Divide by µ, which is a rate, to give

d[A]

d(µt)
=

d[A]

dt′
= −[A] + (α/µ)[F] + (γ/µ)[A]

2
[F]

d[F]

d(µt)
=

d[F]

dt′
= β/µ− (α/µ)[F]− (γ/µ)[A]

2
[F],

where we have defined t′ = µt. Now, to eliminate the parameter γ/µ in front of
the last term in each equation, while continuing to measure [A] and [F] in the
same units, we’ll rescale the concentrations [A] and [F] as

[A] = (µ/γ)1/2x

[F] = (µ/γ)1/2y,

which yields

(µ/γ)1/2 dx

dt′
= −(µ/γ)1/2x + (α/µ)(µ/γ)1/2y + (γ/µ)(µ/γ)3/2x2y

(µ/γ)1/2 dy

dt′
= β/µ− (α/µ)(µ/γ)1/2y − (γ/µ)(µ/γ)3/2x2y,

2



and simplifies to

ẋ = −x + (α/µ)y + x2y

ẏ = (γ/µ)1/2(β/µ)− (α/µ)y − x2y.

These are our original, dimensionless equations, and now we can see exactly how
the two remaining dimensionless constants a and b depend on the underlying
rates in the kinetic equations: a = α/µ and b = (γ/µ)1/2(β/µ).

Intuition

Since rate of F6P→ADP increases with ADP, we can get “overshooting,” i.e.
F6P gets depleted, ADP has no source so it also gets depleted, followed by slow
recovery of F6P. This is a possible oscillator, but how can we prove a limit cycle?

Find the nullclines

ẋ < 0, ẏ < 0

ẋ > 0, ẏ < 0

ẋ = 0, y = x
a+x2

P

ẋ < 0, ẏ > 0

y

x

ẋ > 0, ẏ > 0

ẏ = 0, y = b
a+x2

Figure 3: Nullclines sketch

ẋ = 0 =⇒ − x + ay + x2y = 0

=⇒ y =
x

a + x2

ẏ = 0 =⇒ b− ay − x2y = 0

=⇒ y =
b

a + x2
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Solve for fixed point: x = b, y = b
a+b2 .

Does this prove a limit cycle? NO! We could have a stable fixed point at P ,
or trajectories could spiral out to∞. Indeed, at the intersection of the nullclines
ẋ = ẏ = 0, so P is a fixed point.

Fixed point

We can’t apply Poincaré-Bendixson yet because of the fixed point. We can use
P-B, though, if the fixed point is a repeller, because then our trapping region
is just R \ P . Analyze stability of fixed point P by linearizing the differential
equations around the fixed point:

Jacobian A =

(

∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

)

=

(

−1 + 2xy a + x2

−2xy −(a + x2)

)

Fixed point P : x∗ = b, y∗ =
b

a + b2

A(P ) =

(

−1 + 2 b2

a+b2 a + b2

− 2b2

a+b2 −(a + b2)

)

∆ = det A(P ) = a + b2 > 0

τ = tr A(P ) = −1 + 2
b2

a + b2
− (a + b2) = −b4 + (2a− 1)b2 + (a + a2)

a + b2

In general, we can quickly determine the stability of a fixed point if we know
∆ and τ , i.e. the determinant and trace of the Jacobian at the fixed point,
because the eigenvalues are given by

λJ =
1

2
(τ ±

√

τ2 − 4∆).

(It’s worth remembering that for any square matrix ∆ = Πiλi and τ = Σiλi.)

centers

stable spirals

unstable spirals

τ

stable nodes

unstable nodes

saddle

∆

Figure 4: Stability and types of fixed points

The fixed point P is unstable for τ > 0, stable for τ < 0. The dividing line
τ = 0 is at

b2 =
1

2
(1− 2a±

√
1− 8a)
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Figure 5: Glycolysis analysis

?

slope = −1

b/a

R

y

x

(b, b/a)

Figure 6: Trapping region

Find a trapping region

Examine Figure 6 (page 6). The vectors for ẋ = 0 or ẏ = 0 follow from the last
figure. But what about the circled vector?
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Circled vector is trapping if ẏ < −ẋ (i.e. ẋ + ẏ < 0) along the boundary:

ẋ + ẏ = −x + b =⇒ ẋ + ẏ < 0 if x > b,

so the dashed lines do define a trapping region.

A model for glycolysis

We can conclude that our glycolytic model functions as in Figure 5 (page 5).Does
this make sense? If a is too big, then F6P→ADP even for low levels of ADP, so
there’s no chance for a pool of F6P to accumulate. At a fixed a, if b is too small
then new F6P will “instantly” turn into ADP and get used up, so the system is
locked in a low flux state. If b is too big, ADP will never be low enough, so the
system is locked into a high flux state.
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How to characterize a limit cycle?

• (nearly) harmonic oscillator vs relaxation oscillator

• period

• amplitude

Example - van der Pol oscillator

ẍ + µ(x2 − 1)ẋ + x = 0

Damped harmonic oscillator: ordinary damping for |x| > 1,“negative” damp-
ing for |x| < 1. Large amplitude oscillations will decay, but small amplitude
oscillations will get pumped up. Like a parent pushing a child on a swing...

It can be proven that the van der Pol oscillator has a single, stable limit
cycle for each µ > 0.

van der Pol as a relaxation oscillator (µ >> 1)

ẍ + µ(x2 − 1)ẋ =
d

dt

[

ẋ + µ(
1

3
x3 − x)

]

Let F (x) =
1

3
x3 − x, ω = ẋ + µF (x).

The van der Pol equation implies

ω̇ = −x, ẋ = ω − µF (x),

and if we let y = ω/µ,

ẋ = µ[y − F (x)] ← fast

ẏ = − 1

µ
x ← slow

Nullclines

So there are two separated timescales:

“crawls” ∆t ∼ µ

“jumps” ∆t ∼ 1/µ

Period

The period of relaxation oscillator is dominated by crawls. For van der Pol, by
symmetry T ≈ 2

∫ tB

tA

dt.
On the slow branches:

dy

dt
≈ dy

dx

∣

∣

∣

∣

Nullcline

dx

dt
=

dF (x)

dx

dx

dt
= (x2 − 1)

dx

dt
.

But
dy

dt
= − 1

µ
x,
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slow: ẏ ∼ 1
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ẋ = 0, y = F (x) = 1

3
x3 − x

ẏ = 0

fast: ẋ ∼ µ
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Figure 7: van der Pol nullclines

so

− 1

µ
x ≈ (x2 − 1)

dx

dt

and

dt ≈ −µ(x2 − 1)

x
dx.

Therefore:

T = 2

∫ tB

tA

dt ≈ 2

∫ xB

xA

−µ(x2 − 1)

x
dx

= 2µ

[

x2

2
− ln x

]∣

∣

∣

∣

2

1

since (xA = 2, xB = 1)

= µ(3− 2 ln 2) ∼ µ X
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