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Abstract

Gene expression levels fluctuate even under constant external conditions. Much emphasis has usually been placed on the
components of this noise that are due to randomness in transcription and translation. Here we focus on the role of noise
associated with the inputs to transcriptional regulation; in particular, we analyze the effects of random arrival times and
binding of transcription factors to their target sites along the genome. This contribution to the total noise sets a
fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily
obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression
level. We argue that simple, universal models of noise dominated by transcription and translation are inconsistent with the
embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional
control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures
of input noise, and we discuss the experiments needed to test the importance of input noise more generally.
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Introduction

A number of recent experiments have focused attention on

noise in gene expression [1,2,3,4,5,6,7,8,9]. The study of noise in

biological systems more generally has a long history, with two very

different streams of thought. On the one hand, observations of

noise in behavior at the cellular or even organismal level give us a

window into mechanisms at a much more microscopic level. One

of the classic examples of using noise to draw inferences about

biological mechanism is the Luria–Delbrück experiment [10],

which demonstrated the random character of mutations, but one

can also point to early work on the nature of chemical transmission

at synapses [11,12] and on the dynamics of ion channel proteins

[13,14,15,16]. On the other hand, noise limits the reliability of

biological function, and it is important to identify these limits.

Examples include tracking the reliability of visual perception at

low light levels down to the ability of the visual system to count

single photons [17,18], the implications of channel noise for the

reliability of neural coding [19,20,21], and the approach of

bacterial chemotactic performance to the limits set by the random

arrival of individual molecules at the cell surface [22].

After demonstrating that one can observe noise in gene

expression, most investigators have concentrated on the mecha-

nistic implications of this noise. Working backward from the

observation of protein concentrations, one can try to find the

components of noise that derive from the translation of mRNA

into protein, or the components that arise from noise in the

transcription and degradation of the mRNA itself. At least in some

organisms, a single mRNA transcript can give rise to many protein

molecules, and this ‘burst’ both amplifies the fluctuations in the

protein copy number and changes their statistics, so that even if

the number of mRNA copies obeys the Poisson distribution the

number of protein molecules will not [23]; this discussion parallels

the understanding that Poisson arrival of photons at the retina

generates non–Poisson statistics of action potentials in retinal

ganglion cells because each photon triggers a burst of spikes [24].

Recent large scale surveys of noise in eukaryotic transcription have

suggested that the noise in most protein levels can be understood

in terms of this picture, so that the fractional variance in the

number of proteins expressed from gene i is universally given by

g2
i :

s2
gi

SgiT2
~

b

SgiT
, ð1Þ

where s2
gi
~S gi{SgiTð Þ2T is the variance in the protein copy

number, and b,103 is the burst size, found to be approximately

constant for all genes [9].

The mechanistic focus on noise in transcription vs translation

perhaps misses the functional role of gene expression as part of a

regulatory network. Almost all genes are subject to transcriptional

regulation, and hence the expression level of a particular protein

can be viewed as the cell’s response to the concentration of the

relevant transcription factors. Seen in this way, transcription and

translation are at the ‘output’ side of the response, and the binding

of transcription factors to their targets along the genome is at the

‘input’ side (Fig. 1). Noise can arise at both the input and output,

and while fluctuations in transcription factor concentration could

be viewed as an extrinsic source of noise [1,25], there will be

fluctuations in target site occupancy even at fixed transcription

factor concentration [26,27,28]. There is a physical limit to how

much the impact of these input fluctuations can be reduced,

essentially because any system that responds to changes in the

concentration ultimately is limited by the number of molecules
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that are carried by diffusion into the immediate vicinity of the

receptor site. For realistic transcription factor concentrations and

readout times this number can be small and therefore subject to

considerable noise [26,22,29].

In this paper we revisit the relative contributions of input and

output noise. Input noise has a clear signature, namely that its

impact on the output protein concentration peaks at an

intermediate value of the input transcription factor concentration.

The analogous signature was essential, for example, in identifying

the noise from random opening and closing of individual ion

channels in neurons [30,31]. Perhaps surprisingly, we show that

this signature is easily obscured in conventional ways of plotting

the data on noise in gene expression. Recent experiments on the

regulation of Hunchback expression by Bicoid in the early

Drosophila embryo [32] are consistent with the predicted signature

of input noise, and (although there are caveats) a quantitative

analysis of these data supports a dominant contribution of diffusive

input noise. We discuss what experiments would be required to

test this conclusion more generally.

Results

Global consistency
We begin by asking if a universal noise model given by Eq (1)

can be used simultaneously and in a consistent way for both

transcription factors and their targets. Our goal for this section is

to show that this is not the case, and that, furthermore, one can be

led to models of the form of Eq (1) whenever the input noise is

neglected in the analysis. These two findings will motivate the

following sections in which we will reexamine the theoretical

properties of the input noise and look for its signatures in

experimental data of Ref [32].

Let us consider a gene g which is regulated by several

transcription factors gm, m = 1, …, K. In the simplest model, the

dynamics for the expression of gene g can be written as:

tg

dg

dt
~f g1,g2, . . . ,gKð Þ{g, ð2Þ

where f is the production function that depends on the

concentrations of the regulators gm, and 2g accounts for the

gene’s degradation with a time constant tg. A more complete

model would include the dynamics of mRNA and binding site

occupancy. This level of detail is omitted here because it does not

influence the arguments made in this section; in Sources of noise

section, we will, however, treat all of these processes explicitly for

the case of a single gene regulated by a single transcription factor.

In steady state, the mean number of proteins of gene g in the cell

will be a function of the mean copy numbers of all the relevant

transcription factors. When the noise is small, we should be able to

write:

SgT~f Sg1T,Sg2T, . . . ,SgKTð Þ: ð3Þ

Even in steady state, however, transcription factor copy numbers

gm fluctuate around the mean value: gm(t) = Ægmæ+dgm(t). When we

speak about the ‘noise’ in TF levels, we are referring precisely to

fluctuations dgm, which can be characterized by two parameters:

their strength, or variance, s2
gm

~S dgm

� �2T, and their correlation

time tgm
[5]. To compute the effect of these noise sources on the

regulated gene g, we propagate them through the input/output

relation f [23,6,33], so that

S dgð Þ2T~
XK

m~1,n~1

Lf

Lgm

Lf

Lgn
WmnSdgmdgnTzS dgð Þ2T0, ð4Þ

where we include the noise Æ(dg)2æ0 due to stochastic transcription

and translation of gene g; this intrinsic contribution is present even at

fixed transcription factor levels or in constitutively expressed genes.

Conceptually, Eq (4) looks much like computing a first order

term in a Taylor expansion of Eq (3) around the steady state and

squaring it to get (dg)2, where the effect of the fluctuation dgm in the

regulator m on the output gene g is determined by the

‘susceptibility’ hf/hgm [23]. One important difference between

Eq (4) and the plain Taylor expansion around the steady state,

however, is the presence of the noise filtering or noise averaging

term Wmn, which reminds us that Eq (3) is really a result of the

dynamical system described by Eq (2), and that noise propagation

depends not only on the noise magnitudes, but also fluctuation

correlation times [23]. While it is possible to derive an expression

for W if the function f is given (and we shall do that in Methods for

the model proposed in the next section), we highlight two

important limiting cases here. If the dynamics of gene g is slow

compared to that of its transcription factors, i.e. tg&tgm ,gn
, then

WmnR0 and gene g will ‘‘average away’’ upstream noise; in

contrast, if transcription factors fluctuate more slowly or on a

comparable timescale, Wmn will be of order 1.

If the noise in gene expression is dominated by the processes of

transcription and translation, and if the transcription factors are

not regulating each other, then the correlations between

fluctuations in the copy numbers of different proteins will be very

small, so we expect that

SdgmdgnT~dmnS dgm

� �2T, ð5Þ

where dmn denotes a Kronecker delta symbol. Furthermore, it can

be shown that the filtering function W now reduces to

Wm~
tgm

tgm
ztg

: ð6Þ

This allows us to simplify the propagation of noise in Eq (4) to

give
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Figure 1. A simple model for transcriptional regulation.
Transcription factor is present at an average concentration c, diffusing
freely with diffusion constant D; it can bind to the binding site of linear
dimension a and the fractional occupancy of this site is nM[0,1]. Binding
occurs with a second order rate constant k+, and unbinding occurs with
a first order rate constant k2. When the site is bound, the mRNA are
transcribed at rate Re and degraded with rate t{1

e , resulting in a number
of transcripts e. Proteins are translated from each mRNA molecule with
rate Rg and degraded with rate t{1

g , resulting in a copy number g.
doi:10.1371/journal.pone.0002774.g001
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S dgð Þ2T~
XK

m~1

Lf

Lgm

� �2

WmS dgm

� �2TzS dgð Þ2T0: ð7Þ

If, as in Eq (1), we express the noise in protein copy number as a

fractional noise g, then this becomes

g2~
XK

m~1

L log f

L log gm

� �2

Wmg2
mzg2

0: ð8Þ

In particular, this means that there is a minimum level of noise,

g2
§

XK

m~1

L log f

L log gm

� �2

Wmg2
m: ð9Þ

But if the fractional variance in protein copy number has a simple,

universal relation to the mean copy number, as in Eq (1) [9], then

this simplifies still further:

b

SgT
§

XK

m~1

L log f

L log gm

� �2

Wm
b

SgmT
ð10Þ

[1 §

XK

m~1

L log f

L log gm

� �2

Wm
SgT
SgmT

: ð11Þ

Since the proteins labeled by the indices m represent

transcription factors, usually present at low concentrations, and

the protein g is a regulated gene—such as a structural or metabolic

protein—but not a transcription factor itself, one expects that Ægæ/
Ægmæ?1. If the dynamics of gene expression for both the regulated

gene and its transcription factors happen on the same timescale,

we have Wm~tgm

�
tgm

ztg

� �
*1, and hence:

XK

m~1

L log f

L log gm

� �2

%1: ð12Þ

Since this inequality constrains the sum of squares of terms, each

must be much smaller than one. This means that when we make a

small change in the concentration of any transcription factor, the

response of the regulated gene must be much less than

proportional. In this sense, the assumption of a simple universal

description for the level of noise in gene expression, Eq (1), leads

us to the conclusion that transcriptional ‘‘regulation’’ can’t really

be very effective, and this must be wrong. Notice that this problem

is independent of the burst size b, and hence doesn’t depend on

whether the noise is dominated by transcription or translation.

From Eq (12) we conclude that the original hypothesis about the

simple noise model, Eq (1), should be re-examined. Alternatively,

if this hypothesis were correct, either the downstream gene’s

expression would have to change on a timescale which is much

slower than those of its regulators (and consequently WR0), or

there would have to exist subtle correlations among all the protein

copy number fluctuations of the different transcription factors.

However, since the gene expression machinery is shared between

transcription factors and their targets, there is no particular reason

to expect very different dynamics for various genes. If, conversely,

the assumption of Eq (5) is wrong and the correlations between

protein levels provide consistency, they would have to take on a

very special form—different transcription factors regulating a

single gene would have to be correlated in a way that matches

their impact on the expression of that gene—which seems

implausible but would be very interesting if it were true.

Sources of noise
The previous section points to severe difficulties for the

universal noise model of Eq (1) when it is applied simultaneously

to transcription factors and their target, as in Eq (2). To make this

general problem more specific, we now focus on a simple case of a

gene regulated by a single TF and work out carefully the noise in

this small system.

Figure 1 makes clear that the concentration of a regulated gene

product can fluctuate for many reasons. The processes of synthesis

and degradation of the protein molecules themselves are discrete

and stochastic, as are the synthesis and degradation of mRNA

molecules; together these constitute the ‘‘output noise’’ which has

been widely discussed. But if we are considering a gene whose

transcription is regulated, we need a microscopic model for this

process. For the case of a transcriptional activator, there are

binding sites for the transcription factors upstream of the regulated

gene, and when these sites are occupied transcription proceeds at

some rate, but when the site is empty transcription is inhibited.

Because there are only a small number of relevant binding sites (in

the simplest case, just one), the occupancy of these sites must

fluctuate, and this random switching is an additional source of

noise. In addition, the binding of transcription factors to their

target sites along the genome depends on the concentration in the

immediate neighborhood of these sites, and this fluctuates as

molecules diffuse into and out of the neighborhood.

All of the different processes described above and schematized

in Fig. 1 can be worked out analytically using Langevin methods

and the predictions of this analysis can be tested against detailed

stochastic simulations. We computed the total noise variance of a

regulated gene, s2
g~S dgð Þ2T, by adding up the noise contributions

from the relevant microscopic processes (see results below; for

calculations see Methods, where we also make a connection with the

derivations in the Global consistency section). Notice that variations

in cell size, protein sorting in cell division, fluctuations in RNA

polymerase and ribosome concentrations, and all other extrinsic

contributions to the noise are neglected.

The variance in protein copy number s2
g can be written as a

sum of three terms, which correspond to the output, switching,

and diffusion noise (see Eq (58) in Methods). To set the scale, we

have expressed the copy number as a fraction of its maximum

possible mean value, g0, which is reached at high concentrations of

the transcriptional activator. In these units, we find

sg

g0

� �2

~
1zRgte

g0
gz

1{gð Þ2g

k{tg

z
1{gð Þ2g2

pDactg

ð13Þ

where ḡ = Ægæ/g0 is the protein copy number expressed as a fraction

of its maximal value, c is the concentration of the transcription

factor, and other parameters are as explained in Fig. 1.

The first term in Eq (13) is the output noise and has a Poisson–

like behavior, with variance proportional to the mean, but the

proportionality constant differs from 1 by Rgte, i.e. the burst size or

the number of proteins produced per mRNA [23]. This is just the

simple model of Eq (1), with b = 1+Rgte.

The second term in Eq (13) originates from binomial ‘‘switch-

ing’’ as the transcription factor binding site occupation fluctuates,

and is most closely analogous to the noise from random opening

Input Noise in Gene Regulation
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and closing of ion channels. This term will be small for unbinding

rates k2 that are fast compared to the protein lifetime, but might

be large for factors that take a long time to equilibrate or that form

energetically stable complexes on their promoters.

The third term in Eq (13) arises because the diffusive flux of

transcription factor molecules to the binding site fluctuates at low

input concentration c; in effect the receptor site ‘‘counts’’ the

number of molecules arriving into its vicinity during a time

window , and this number is of the order ,Dactg. This argument is

conceptually the same as that for the limits to chemoattractant

detection in chemotaxis, as discussed by Berg and Purcell [22]. It

can be shown that this is a theoretical noise floor that cannot be

circumvented by using any sophisticated ‘‘binding site machinery’’

as long as this machinery is contained within a region of linear size

a to which the molecules are transported by diffusion [26,29]. For

example, cooperative binding to the promoter, or binding to a

promoter with multiple internal states, will modify the binomial

switching term. However, in both cases the input diffusion noise

will remain unaffected, which is easily seen when this noise term is

expressed as an effective noise in transcription factor concentration

sc using the relation

sg~
L�gg cð Þ
Lc

����
����sc: ð14Þ

Although cooperativity does not change the effective concen-

tration noise due to diffusion, it does reduce the relative

significance of the switching noise; see Methods: Cooperative binding

of transcription factors and Ref [29]. Since we will discuss a system

which is strongly cooperative, in much of what follows we neglect

the switching noise term and focus on the output noise and

diffusion noise. Then the generalization to multisite, cooperative

regulation is straightforward (see Methods: Cooperative binding of

transcription factors). We expect that cooperative effects among h

transcription factors generate a sigmoidal dependence of expres-

sion on the transcription factor concentration, so that

�gg~
ch

chzKh
d

, ð15Þ

where h is called the Hill coefficient, and Kd is the concentration

required for half maximal activation. We can invert this

relationship to write the concentration c, which is relevant for

the diffusive noise, as a function of the mean fractional expression

level ḡ. Substituting back into Eq (13), and neglecting the switching

noise, we obtain

sg

g0

� �2

~a�ggzb�gg2{1=h 1{�ggð Þ2z1=h
, ð16Þ

where a and b are combinations of parameters that measure the

strength of the output and diffusion noise, respectively. If we

express the variance in fractional terms, this becomes

g2
g~a

1

�gg
zb�gg{1=h 1{�ggð Þ2z1=h: ð17Þ

The universal noise model of Eq (1) corresponds to b = 0 (no input

noise) and b = ag0. Figure 2 shows the predicted noise levels for

different ratios of output to input noise (b/a) and illustrates how

the monotonic relationship between the noise and the mean

changes when input noise becomes the dominant contribution.

For very highly cooperative, essentially switch–like systems, we

can take the limit hR‘ to obtain

sg

g0

� �2

~a�ggzb�ggzb�gg2 1{�ggð Þ2 ð18Þ

g2
g~a

1

�gg
zb 1{�ggð Þ2: ð19Þ

In particular, if we explore only expression levels well below the

maximum (ḡ%1), then the diffusion noise just adds a constant b to

the fractional variance. Because a constant contribution to g2
g can

be expected for global or some extrinsic noise sources [25,6,9], the

diffusion noise in a highly cooperative system could be confused

with either global or extrinsic noise.

Signatures of input noise
Input noise arises from fluctuations in the occupancy of the

transcription factor binding sites. These fluctuations must vanish at

very high transcription factor concentrations, where all sites are

fully occupied, or at very low concentrations, where the sites are

never occupied. In the case of a transcriptional activator, full and

zero occupancy correspond to maximal and minimal expression

levels, respectively. Hence a key signature of input noise is a peak

at some intermediate expression level as shown in Fig. 2.

The claim that many genes have expression noise levels which

fit the universal output noise model of Eq (1) would seem to

contradict the prediction of a peak in the noise as a function of the

mean. But if we plot the predictions of the model with input noise

as a fractional variance vs mean, the prominent peak disappears

Figure 2. Expression noise as a function of the mean. The
standard deviation of the protein concentration sg/g0 is plotted against
the mean protein concentration ḡ = Ægæ/g0, from Eq (16) with h = 5. In all
cases the output noise term has a strength a = 0.01, and the different
curves are indexed by the ratio of input noise to output noise b/
a = 0,10,20,30. In the inset, we show the same results plotted as a
fractional noise variance g2

g vs the mean [Eq (17)], on a logarithmic
scale.
doi:10.1371/journal.pone.0002774.g002

Input Noise in Gene Regulation
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(inset to Fig. 2). In fact, over a large dynamic range, the input noise

seems just to increase the magnitude of the fractional variance

while not making a substantial change in the slope of

log g2
g

� �
vs log SgTð Þ. Confronted with real data on a system

with significant input noise, we could thus fit much of those data

with the universal output noise model but with a larger value of b.

There is, of course, a difference between input and output noise,

even when plotted as log g2
g

� �
vs log SgTð Þ, namely a rapid drop

in noise level as we approach maximal expression. But this effect is

confined to a narrow range, essentially a factor of two in mean

expression level. As we discuss below, there is a variety of reasons

why this might not have been seen in the data of Ref [9].

Recent experiments on the precision of gene expression in the

early Drosophila embryo provide us with an opportunity to search

for the signatures of input noise [32]. The embryo contains a

spatial gradient of the protein Bicoid (Bcd), translated from

anteriorly located maternal mRNA, and this protein is a

transcription factor which activates, among other genes, hunchback.

Looking along the anterior–posterior axis of the embryo one thus

has an array of nuclei that experience a graded range of

transcription factor concentrations. Using antibody staining and

image processing methods, it is thus possible to collect thousands

of points on a scatter plot of input (Bicoid concentration) vs. output

(Hunchback protein concentration); since even in a single embryo

there are many nuclei that have the same Bcd concentration, one

can examine both the mean Hunchback (Hb) response and its

variance. In Fig. 3 we replot the data from Ref [32] (cf. Fig. 4 of

the reference).

The mean response of Hb to Bcd is fit reasonably well by

Eq (15) with a Hill coefficient h = 5 [32], and in Fig. 4 we show the

noise in this response as a function of the mean. The peak of

expression noise near half maximal expression—the signature of

input noise—is clearly visible. More quantitatively, we find that

the data are well fit by Eq (16) with the contribution from output

noise (a<1/380) much smaller than that from input noise (b<1/

2). We also consider the same model with hR‘, and this fully

switch–like model, although formally still within error bars,

systematically deviates from the data. Finally we consider a model

in which diffusion noise is absent, but we include the switching

noise from Eq (13), which generalizes to the case of cooperative

binding (see Methods: Cooperative binding of transcription factors).

Interestingly, this model has the same number of parameters as

the diffusion noise model, but does a significantly poorer job of

fitting the data. While the fit can be improved further by adding a

small background to the noise, we emphasize that Eq (16)

correctly captures the non–trivial shape of the noise curve with

only two parameters. Because input noise falls to zero at maximal

expression, the sole remaining noise at that point is the output

noise, and this uniquely determines the parameter a. The strength

of the input noise (b) then is determined by the height of the noise

peak, and there is no further room for adjustment. The shape of the

peak is predicted by the theory with no additional parameters, and

the different curves in Fig. 4 demonstrate that the data can

distinguish among various functional forms for the peak.

Are the parameters a and b that fit the Bcd/Hb data

biologically reasonable? The fact that diffusive noise dominates

at intermediate levels of expression (b&a) means that the

Hunchback expression level provides a readout of Bcd concen-

tration with a reliability that is close to the physical limit set by

diffusional noise, as was argued in Ref [32] based on the

magnitude of the noise level and estimates of the relevant

microscopic parameters that determine b (b<h2/pDaKdtg, see

the Methods). The dominance of diffusive noise over switching noise

Figure 3. The input–output relation for Bicoid regulation of
Hunchback expression, redrawn from Ref [32] (cf. Fig. 4 of the
reference). Dashed curves show mean expression levels in different
embryos, thick black line is the mean across all embryos, and points
with error bars show the mean and standard deviation of Hb expression
at a given Bcd concentration in one embryo.
doi:10.1371/journal.pone.0002774.g003

Figure 4. Standard deviation of Hunchback expression as a
function of the mean (points with error bars), replotted from
Ref [32]. The black line is a fit of combined output and diffusion noise
contributions, from Eq (16) with h = 5, and the dashed red line is with
hR‘, from Eq (18). In contrast, the dashed blue line is the best fit of
combined output and switching noise contributions, i.e. (sg/
g0)2 = aḡ+c(12ḡ)2ḡ. Although both diffusion and switching noise
produce a peak at intermediate expression levels, the shapes of the
peaks are distinguishable, and the data favor the diffusion noise model.
doi:10.1371/journal.pone.0002774.g004

Input Noise in Gene Regulation
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presumably is related to the high cooperativity of the Bcd/Hb

input/output relation [29].

The parameter a = (1+b)/g0 measures the strength of the output

noise and thus depends on the absolute number of Hb molecules

and on the number of proteins produced per mRNA transcript. If

this burst size is in the range b = Rgte,1–10, then our fit predicts

the maximum expression level of Hb corresponds to g0 = 700–

4000 molecules in the nucleus. Given the volume of the nuclei at

this stage of development (,140 mm3; see Refs [32,34]), this is a

concentration of 8–48 nM. Although we don’t have independent

measurements of the absolute Hunchback concentration, this is

reasonable for transcription factors, which typically act in the

nanoMolar range [35,36,37,38,39,40], and can be compared with

the maximal nuclear concentration of Bcd, which is 5563 nM

[32]. Larger burst sizes would predict larger maximal expression

levels, or conversely measurements of absolute expression levels

might give suggestions about the burst size for translation in the

early Drosophila embryo.

Discussion

In the process of transcriptional regulation, the (output)

expression level of regulated genes acts as a sensor for the (input)

concentration of transcription factors. The performance of this

sensor, and hence the regulatory power of the system, is limited by

noise. While changes in the parameters of the transcriptional and

translational apparatus can change the level of output noise, the

input noise is determined by the physical properties of the

transcription factor and its interactions with the target sites along

the genome. Ultimately, there is a lower bound on this input noise

level set by the noise in random arrival of the transcription factors

at their targets, in much the same way that any imaging process

ultimately is limited by the random arrival of photons.

Input and output noise seem to be so different that it is hard to

imagine that they could be confused experimentally. Some of the

difficulty, however, can be illustrated by plotting the results from

the Bcd/Hb experiments of Ref [32] in the form which has

become conventional in the study of gene expression noise, as a

fractional variance vs mean expression level (Fig. 5). The signature

of input noise, so clear in Fig. 4, now is confined to a narrow range

(,62) near maximal expression. In contrast, over more than a

decade of expression levels the noise level is a good fit to

g2
g!SgT{f, with f = 1.04 being very similar to the prediction of

the universal noise model (f = 1) in Eq (1). The departures from

power–law behavior are easily obscured by global noise sources,

experimental error, or by technical limitations that lead to the

exclusion of data at the very highest expression levels, as in Ref [9].

The present analysis of the Bicoid/Hunchback data shows that

the signatures of the input noise are surprisingly subtle. In this

system, the behavior near half maximal expression is biologically

most relevant, since it is at this very concentration that the system

has to ‘decide’ where to draw a fairly sharp gene expression

boundary as one of the first steps in constructing a spatial pattern.

While in other systems the behavior of noise at the intermediate

gene expression levels might not be of so high a biological

importance for the organism, it is only in this region that different

sources of noise are qualitatively distinguishable, as is clear from

Fig. 5. Thus, unless we have independent experiments to measure

some of the parameters of the system, we need experimental access

to the full range of expression levels and hence, implicitly, to the

full dynamic range of transcription factor concentrations, if we

want to disentangle input and output noise.

The early Drosophila embryo is an attractive model system

precisely because the organism itself generates a broad range of

transcription factor concentrations, and conveniently arranges

these different samples along the major axes of the embryo. A

caveat to our analysis is the possibility that, in the concentration

range of interest, Hunchback is controlled by factors other than

Bicoid [41]. While it explains the systematic variation of

Hunchback with Bicoid through the sigmoidal input/output

relation, our model would treat any other regulatory input

influence as an ‘extrinsic’ noise source. Indeed, judging by the

qualitative shape of the noise vs mean expression curve in Fig. 4

alone and recalling the analysis of Elowitz et al [1], one could

attribute the whole peak in the noise at intermediate levels of

expression to some (unknown) extrinsic noise source rather than to

the noise in Bicoid concentration. The existing measurements

cannot definitely rule out this possibility, yet there are two strong

reasons to consider it unlikely.

First, Bicoid is a known and probably the dominant factor

controlling Hunchback expression at midpoint of the anterior-

posterior axis. With an absolute measurement of Bicoid concen-

tration – the equivalent of which did not exist in case of Elowitz et

al [1] – the theory predicts that we should see a non-negligible

contribution to the noise peaking at intermediate expression levels.

For an unknown factor x to generate an effect of similar size, the

factor would have to have a susceptibility (i.e. hḡ /hx) at the major

axis midpoint comparable in strength to Bicoid’s [Eq (2)]. One

would thus need to justify a presence of such a strong alternative

regulator at that position as well as the absence of the predicted

noise contribution from Bicoid at the same position.

Figure 5. Logarithmic plot of fractional variance vs the mean
expression level for Hunchback, replotted from Ref [32]. Each
black point represents the noise level measured across nuclei that
experience the same Bcd concentration within one embryo, and results
are collected from nine embryos. The solid line shows a fit to
g2

g!SgT{f in the region below half maximal mean expression; we find
a good fit, with f = 1.04, despite the fact that these data show a clear
signature of input noise when plotted in Fig. 4. Dashed line indicates
the global noise floor suggested in Ref [9], and red points show the raw
data with this variance added. Although the input noise still appears as
a drop in fractional noise level near maximal mean expression, this now
is quite subtle and easily obscured by experimental errors.
doi:10.1371/journal.pone.0002774.g005
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Second, we emphasize that the matching between noise

measurements and theoretical predictions is not just qualitative.

Concretely, the detailed shape of the noise vs the mean expression

in Fig. 4 can discriminate between various regulatory scenarios:

Eq (16) shows the non-trivial dependence of the noise on the mean

expression in the case of diffusion input noise, in particular its

scaling as ḡ221/h(12ḡ)2+1/h. These exponents will be different for a

non-diffusional extrinsic noise contribution, yet the data of Ref

[32] give support to the above fit, using the measured Hill slope of

h = 5. We note that despite these arguments it is possible that some,

but presumably not the majority, of the noise at intermediate

expressions is contributed by unknown extrinsic factors.

Another caveat is that since we don’t directly control the

transcription factor concentration, we have to measure it. In

particular, in order to measure the variance of the output

(Hunchback, in the present discussion) we have to find many

nuclei that all have the same input transcription factor (Bicoid)

concentration. Because the mean output is a steep function of the

input, errors in the measurement of transcription factor concen-

tration can simulate the effects of input noise, as discussed in Ref

[32]. Thus, a complete analysis of input and output noise requires

not only access to a wide range of transcription factor

concentrations, but rather precise measurements of these concen-

trations.

Why are the different sources of noise so easily confused? If

noise is dominated by randomness in a single step of the

translation process, then the number of protein molecules will

obey the Poisson distribution, and the variance in copy number

will be equal to the mean. But if we can’t actually turn

measurements of protein level into molecule counts, then all we

can say is that the variance will be proportional to the mean. If the

dominant noise source is a single step in transcription, then the

number of mRNA transcripts will obey the Poisson distribution,

and the variance of protein copy numbers still will be proportional

to the mean, but the proportionality constant will be enhanced by

the burst size. The same reasoning, however, can be pushed

further back: if, far from maximal expression, the dominant source

of noise is the infrequent binding of a transcriptional activator (or

dissociation of a repressor) to its target site, then the variance in

protein copy number still will be proportional to the mean. Thus,

the proportionality of variance to mean implies that there is some

single rare event that dominates the noise, and by itself doesn’t

distinguish the nature of this event.

If noise is dominated by regulatory events, then the number of

mRNA transcripts should be drawn from a distribution broader

than Poisson. In effect the idea of bursting, which amplifies protein

relative to mRNA number variance, applies here too, amplifying

the variance of transcript number above the expectations from the

Poisson distribution. Transcriptional bursting has in fact been

observed directly [7], although it is not clear whether this arises

from fluctuations in transcription factor binding or from other

sources.

Summary
The main findings of this paper are as follows:

N Universal and simple noise model of Eq (1), in which the noise

scales in inverse proportion to the mean expression for all

genes, is inconsistent with the embedding of gene expression in

a regulatory network. One possible cause of this inconsistency

stems from assigning all of the noise to the processes on the

‘output’ side of transcriptional regulation, and ignoring the

contribution of input noise. In particular, previous theoretical

work has shown that the contribution of diffusive input noise to

the observed variance of gene expression could be significant

[26].

N Despite appearing straightforward in theory, in real data the

signatures of input noise can be surprisingly subtle to detect:

inability to probe the whole physiological range of transcrip-

tion factor concentrations, experimental noise, the difficulties

in measuring absolute concentrations of both the regulator and

controlled gene and established ways of plotting and analyzing

data can act, among others, as confounding factors when noise

measurements are used to learn about microscopic processes of

transcriptional regulation.

N We argue that the Bicoid/Hunchback system of the fruit fly

Drosophila provides an example in which input noise is

dominant, and furthermore, that the detailed form of the

variance vs mean quantitatively supports a dominant role for

diffusion rather than switching noise.

Although there are caveats, these conclusions are consistent with

the idea that, as with other critical biological processes

[18,22,42,43], the regulation of gene expression can operate with

a precision limited by fundamental physical principles.

Methods

Langevin derivation of input noise
We consider a simplified model of regulated gene expression, as

schematized in Fig. 1:

Ltc~D+2c x,tð Þ{ _nnd x{x0ð Þz { ð20Þ

_nn~kzc x0,tð Þ 1{nð Þ{k{nzjn ð21Þ

_ee~Ren{t{1
e ezje ð22Þ

_gg~Rge{t{1
g gzjg: ð23Þ

Equation (20) describes the diffusion of the transcription factor

that can be absorbed to or released from a binding site on the

DNA located at x0; d(x2x0) denotes the Dirac-delta function.

These transcription factors are produced at sources and

degraded at sinks , which can both be spatially distributed and

can also contribute to the noise in c. Equation (21) describes the

dynamics of the binding site occupancy; binding occurs with a

second order rate constant k+ and unbinding with a first order rate

constant k2, and the dissociation constant of the site is Kd = k2/k+.

The Langevin term jn induces stochastic (binomial) switching

between occupied and empty states of the site. Equations (22) and

(23) describe the production and degradation of mRNA and

protein, respectively, and include Langevin noise terms associated

with these birth and death processes.

This seems a good place to note that, while conventional, the

assumption that transcription and translation are simple one step

processes seems a bit strong. We hope to return to this point at

another time.

Our goal is to compute the variance in protein copy number,

s2
g cð Þ. For simplicity we will assume that the transcription factors

are present at a fixed total number in the cell and that they do not

decay, ~ ~0. We will see that even with this simplification,

where the overall concentration of transcription factors does not
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fluctuate, we still get an interesting noise contribution from the

randomness associated with diffusion in Eq (20).

Our basic strategy is to find the steady state solution of the

model, and then linearize around this to compute the response of

the variables {n,e,g} to the various Langevin forces {jn,je,jg}. In

the linear approximation, the steady states are also the mean

values:

c~�cc ð24Þ

SnT~
kz�cc

kz�cczk{

~
�cc

�cczKd

ð25Þ

SeT~ReteSnT ð26Þ

SgT~RgtgSeT~g0SnT, ð27Þ

where g0 = ReteRgtg is the maximum mean expression level. Notice

that what we have called ḡ = Ægæ/g0 in the text is just the mean

occupancy, Ænæ, of the transcription factor binding site.

Small departures from steady state are written in a Fourier

representation:

c x,tð Þ~�ccz

ð
dv

2p

ð
d3k

2pð Þ3
eik:xe{ivtdĉc k,vð Þ ð28Þ

n~SnTz

ð
dv

2p
e{ivtdn̂n vð Þ ð29Þ

e~SeTz

ð
dv

2p
e{ivtdêe vð Þ ð30Þ

g~SgTz

ð
dv

2p
e{ivtdĝg vð Þ: ð31Þ

Similarly, each of the Langevin terms is written in its Fourier

representation,

jm~

ð
dv

2p
e{ivtĵjm vð Þ, ð32Þ

where m = n,e,g.

As a first step we use the Fourier representation to solve Eq (20)

for dc(x0,t) that we need to substitute into Eq (21) for the binding

site occupancy:

dc x0,tð Þ~
ð

dv

2p
e{ivtd~cc x0,vð Þ ð33Þ

dc x0,vð Þ~ivdn̂n vð Þ
ð

d3k

2pð Þ3
1

{vzD kj j2
ð34Þ

~
ivdn̂n vð Þ

pDa
: ð35Þ

The integral over k in Eq (34) is divergent at large |k|

(ultraviolet). This arises, as explained in Ref [26], because we

started with the assumption that the binding reaction occurs at a

point—the delta function in Eq (20). In fact our description needs

to be coarse grained on a scale corresponding to the size of the

binding site, so we introduce a cutoff so that |k|#kmax = 2p/a,

where a is the linear size of the binding site.

Linearizing Eq (21) for the dynamics of the site occupancy, we

have

{ivdn̂n vð Þ~

{ kz�cczk{ð Þdn̂n vð Þzkz 1{SnTð Þd~cc x0,vð Þzĵjn vð Þ:
ð36Þ

Substituting our result for dc̃(x0,v) from Eq (35), we find

{ivdn̂n vð Þ~

{ kz�cczk{ð Þd�nn vð Þzkz 1{SnTð Þ ivdn̂n vð Þ
pDa

zĵjn vð Þ
ð37Þ

{iv 1z
kz 1{SnTð Þ

pDa

	 

dn̂n vð Þ~

{ kz�cczk{ð Þdn̂n vð Þzĵjn vð Þ
ð38Þ

dn̂n vð Þ~ ĵjn vð Þ
{iv 1zSð Þz kz�cczk{ð Þ ð39Þ

where S= k+(12Ænæ/(pDa). The linearization of Eqs (22) and (23)

takes the form

{ivdêe vð Þ~ 1

te

dêe vð ÞzRedn̂n vð Þzĵje vð Þ ð40Þ

{ivdĝg vð Þ~{
1

tg

dĝg vð ÞzRgdêe vð Þzĵjg vð Þ ð41Þ

Each Langevin term is independent, and each frequency

component v is correlated only with the component at 2v,

defining the noise power spectrum Sĵm vð Þĵm {v0ð ÞT~

2pd v{v0ð ÞNm vð Þ for m = n,e,g, where d(v2v9) is the Dirac-delta

function. Solving the three linear equations, Eqs (39–41), we can

find the power spectrum of the protein copy number fluctuations,

Sg vð Þ~ Ng

v2z1
.

t2
g

zR2
g

Ne

v2z1
.

t2
g

� �
v2z1

�
t2

e

� �z

zR2
gR2

e

Nn

v2z1
.

t2
g

� �
v2z1

�
t2

e

� �
1zSð Þ2v2z1

�
t2

c

h i ,

ð42Þ

where 1/tc = k+c̄+k2. This form has a very intuitive interpretation:

each Langevin term represents a noise source; as this noise

propagates from the point where it enters the dynamical system to

the output, it is subjected both to gain of each successive stage

(prefactors R), and to filtering by factors of
t
~ v2z1

�
t2

� �{1
.

The total variance in protein copy number is given by an

integral over the spectrum,
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S dgð Þ2T:s2
g~

ð
dv

2p
Sg vð Þ, ð43Þ

and the noise power spectra of the Langevin terms associated with

the mRNA and protein dynamics have the simple forms

Ne(v) = 2ReÆnæ and Ng(v) = 2RgÆeæ, respectively. The spectrum

Nn(v) is more subtle. One way to derive it is to realize that since

there is only one binding site and this site is either occupied or

empty, the total variance of dn must be given by the binomial

formula,

S dnð Þ2T~SnT 1{SnTð Þ: ð44Þ

Starting with Eq (39) and the analog of Eq (43), we can use this

condition to set the magnitude of Nn. Alternatively, we can use the

fact that binding and unbinding come to equilibrium, and hence

the fluctuations in n are a form of thermal noise, like Brownian

motion or Johnson noise. The spectrum Nn is therefore determined

by the fluctuation–dissipation theorem [26]. The result is that

Nn~
2

tc

1zSð ÞSnT 1{SnTð Þ: ð45Þ

For simplicity we consider the case where the protein lifetime tg

is long compared with all other time scales in the problem. Then

we can approximate Eq (42) as

Sg vð Þ& 1

v2z1
.

t2
g

Ngz Rgte

� �2
Nez RgteRetc

� �2
Nn

h i
: ð46Þ

Substituting the forms of the individual noise spectra Nm and doing

the integral over v [Eq (43)], we find the variance in protein copy

number

s2
g~tg RgSeTz Rgte

� �2
ReSnT

h i

z
tg

tc

RgteRetc

� �2
1zSð ÞSnT 1{SnTð Þ:

ð47Þ

We notice that the first term in this equation is RgtgÆeæ, which is just

the mean number of proteins Ægæ from Eq (27). The second term is

tg Rgte

� �2
ReSnT~Rgtg ReteSnTð Þ Rgte

� �
ð48Þ

~RgtgSeT Rgte

� �
ð49Þ

~RgteSgT: ð50Þ

Thus, the first two terms together contribute (1+Rgte)Ægæ to the

variance, and this corresponds to the output noise term in Eq (16).

The third term in Eq (47) contains the contribution of input

noise to the variance in protein copy number. To simplify this

term we note that the steady state of Eq (21) is equivalent to

kz�cc 1{SnTð Þ~k{SnT: ð51Þ

Thus we can write

1

tc

:kz�cczk{ ð52Þ

~k{

SnT
1{SnT

z1

	 

~

k{

1{SnT
: ð53Þ

The term we are interested in is

tg

tc

RgteRetc

� �2
1zSð ÞSnT 1{SnTð Þ

~ RgtgRete

� �2tc

tg

1zSð ÞSnT 1{SnTð Þ
ð54Þ

~g2
0

1

k{tg

1zSð ÞSnT 1{SnTð Þ2 ð55Þ

~g2
0

SnT 1{SnTð Þ2

k{tg

zg2
0

1

k{tg

kz 1{SnTð Þ
pDa

SnT 1{SnTð Þ2 ð56Þ

~g2
0

SnT 1{SnTð Þ2

k{tg

zg2
0

SnT2 1{SnTð Þ2

pDa�cctg

, ð57Þ

where in the last step we once again use Eq (51) to rewrite the ratio

k+/k2 in terms of Ænæ. Using Eq (50) and Eq (57) together to

simplify the output and input noise terms in the equation for total

noise, Eq (47), we finally find

sg

g0

� �2

~
1zRgte

g0

�ggz
1{�ggð Þ2�gg

k{tg

z
1{�ggð Þ2�gg2

pDactg

ð58Þ

which is Eq (13) in the main text.

To establish a connection between this result and the discussion

in the Global consistency section, in particular with Eq (4), we first

point out that the derivation presented here is more detailed, as it

includes the dynamics of mRNA and binding site occupancy in

addition to the dynamics of the protein levels g. This allows us to

capture all the relevant noise sources – especially the input noise

that we claim is important – and compute their variances (for

example, without including binding site occupancy as an

independent dynamical variable, we would not be able to compute

the switching noise contribution). It is nevertheless instructive to

rewrite the output and diffusion input noise terms of Eq (58) as

follows:

s2
g~g0 1zRgte

� �
�ggzg2

0

1{�ggð Þ2�gg2

pDa�cctg

ð59Þ

~s2
g,0z

LSgT
L�cc

� �2

|
tD

tg

|s2
c , ð60Þ

where the correlation time of diffusion fluctuations tD = a2/pD is

approximately the time that a molecule needs to clear out of a

region of dimension a by diffusion, and s2
c~c

�
a3 is the variance of
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the concentration in a small volume V = a3. To see why the latter is

true, consider a small volume V that on average contains N̄ = c̄V

molecules. The variance in the number of molecules is Poisson,

and therefore s2
N~N~cV . But sc = sN/V, and hence s2

c~c=V .

After these rearrangements, Eq (60) is clearly of the form

presented in Eq (4), if the only regulator of gene g is the

transcription factor c. Then the filtering term W= tD/(tD+tg)<tD/

tg, because diffusion fluctuations happen on timescales much

shorter than tg (which is usually of the order of at least a minute);

and the susceptibility, hÆgæ/hc̄, can be computed from the steady

state Ægæ = g0ḡ = g0c̄/(c̄+Kd). To summarize: in this section we

computed the noise arising from a particular set of microscopic

processes, summarized by Eqs (20–23), using the Langevin

formalism, and have concluded by showing how the result fits

into a general framework of noise propagation of Eq (2).

Cooperative binding of transcription factors
To generalize this analysis of noise to cooperative interactions

among transcription factors it is useful to think more intuitively

about the two terms in Eq (57), corresponding to switching and

diffusion noise. Consider first the switching noise.

We are looking at a binary variable n such that the number of

proteins is g0n. The total variance in n must be Æ(dn)2æ = Ænæ(12Ænæ)
[Eq (44)]. This noise fluctuates on a time scale tc, so during the

lifetime of the protein we see Ns = tg/tc independent samples. The

current protein concentration is effectively an average over these

samples, so the effective variance is reduced to

S dnð Þ2Teff ~
1

Ns

SnT 1{SnTð Þ~ tc

tg

SnT 1{SnTð Þ: ð61Þ

Except for the factor of g0 that converts n into g, this is the first

term in Eq (57).

Now if h transcription factors bind cooperatively, we can still

have two states, one in which transcription is possible and one in

which it is blocked. For the case of activation, which we are

considering here, the active state corresponds to all binding sites

being filled, and so the rate at which the system leaves this state,

k2, should not depend on the concentration of the transcription

factors. The rate at which the system enters the active state does

depend on concentration, but this does not matter, because with

only two states we must always have an analog of Eq (51), which

allows us to eliminate the ‘‘on rate’’ in favor of k2 and Ænæ. The

conclusion is that the first term in Eq (57), corresponding to

switching noise, is unchanged by cooperativity as long as the

system is still well approximated as having just two states of

transcriptional activity that depend on the potentially many more

states of binding site occupancy.

For the diffusion noise term we use the ideas of Refs [22,26,29].

Diffusion noise should be thought of as an effective noise in the

measurement of the concentration c, with a variance

s2
c

�cc2
*

1

pDa�cctg

, ð62Þ

where again we identify the protein lifetime as the time over which

the system averages. For the system with a single binding site,

SnT~
�cc

�cczKd

, ð63Þ

so that

LSnT
Lc

~
1

�cc
SnT 1{SnTð Þ: ð64Þ

The noise in concentration, together with this sensitivity of n to

changes in the concentration, should contribute a noise variance

S dnð Þ2Teff ~
LSnT
Lc

����
����
2

s2
c~

SnT2 1{SnTð Þ2

pDa�cctg

: ð65Þ

This is (up to the factor of g0) the second term in Eq (57). Now the

generalization to cooperative interactions is straightforward. If we

have

SnT~
�cch

�cchzKh
d

, ð66Þ

then

LSnT
Lc

~
h

�cc
SnT 1{SnTð Þ: ð67Þ

Since the effective noise in concentration is unchanged [29], the

only effect of cooperativity is to multiply the second term in

Eq (57) by a factor of h2.

Thus, in the expression [Eq (16)] for the variance of protein

copy number, cooperativity has no effect on the switching noise

but actually increases the diffusion noise by a factor of h2. When

written as a function of the mean copy number and the

transcription factor concentration, this leaves the functional form

of the variance fixed, only changing the coefficients. The overall

effect is to make the contribution of diffusion noise more

important. One way to say this is that, when we refer the noise

in copy number back to the input, cooperativity causes the

equivalent concentration noise to become closer to the limit

Eq (62) set by diffusive noise [29].

Reference [32] also considers the possibility that noise is

reduced by averaging among neighboring nuclei. This does not

change the form of any of the noise terms, but does change the

microscopic interpretation of the coefficients a and b. For

example, averaging for a time tg over N nuclei is equivalent to

having one nucleus with an averaging time Ntg.
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