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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: Organisms/Strains

D. melanogaster: Oregon-R, wild-type laboratory stock N/A Flybase: FBst1000077
D. melanogaster: chromosomal deletion spanning hb w[1118]; Bloomington Drosophila Flybase: FBab0045343
Df(3R)BSC477/TM6C, Sb[1] cu[1] Stock Center BDSC: 24981
Oligonucleotides

smFISH probes for hb, see Table S1 This paper N/A

smFISH probes for Kr, see Table S1 This paper N/A

smFISH probes for kni, see Table S1 This paper N/A

smFISH probes for gt, see Table S1 This paper N/A

Software and Algorithms
FiSH Toolbox Little et al. (2013) N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thomas
Gregor (tg2@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains

Oregon-R (Ore-R) embryos were used as wild-type. Embryos heterozygous for a deficiency spanning hb were collected from crosses
of heterozygous adults of the strain w'''®; Df(BR)BSC477/TM6C. Heterozygotes of the hb deficiency, as well as wild-type male and
female embryos stained for gt, were distinguished from siblings by visual inspection of nascent transcription sites.

METHOD DETAILS

DNA oligonucleotides

Oligonucleotide sequences complementary to the open reading frames of each gene of interest were chosen using the Biosearch
Technologies Stellaris RNA FISH probe designer (https://www.biosearchtech.com/support/tools/design-software/stellaris-
probe-designer). Amine-modified oligonucleotides were obtained from Biosearch Technologies, chemically coupled to NHS-
ester-Atto565 (Sigma-Aldrich; 72464) or -Atto633 (Sigma-Aldrich; 01464) and purified by HPLC. Probes are listed in Table S1.

smFISH protocol

We modified our smFISH protocol (Little et al., 2013) to minimize background and maximize signal. Embryos were crosslinked in
1xPBS containing 16% paraformaldehyde for 2 min before devitellinization. Embryos were washed four times in methanol, 5 min
per wash, with gentle rocking at room temperature, followed by an extended 30-60 min wash in methanol. Fixed embryos were
then used immediately for smFISH without intervening storage. Embryos washed three times in 1X PBS, 5 min per wash, at room
temperature with rocking. Embryos were then washed 3 times in smFISH wash buffer (Little et al., 2013), 10 min per wash, at
room temperature. During this time, probes diluted in hybridization buffer (Little et al., 2013) were preheated to 37°C. Hybridization
was performed for 1.5 hr at 37C with vigorous mixing every 15 min. During hybridization, smFISH wash buffer was preheated to 37C.
Embryos were washed four times with large excess volumes of wash buffer for 3-5 min per wash, rinsed twice briefly in PBS, stained
with DAPI, and mounted in VECTASHIELD (Vector Laboratories; H-1000). Imaging was performed within 48 hr to ensure high quality
signal.

Imaging

Imaging was performed by laser-scanning confocal microscopy on a Leica SP5 inverted microscope. We used a 63x HCX PL
APO CS 1.4 NA oil immersion objective with pixels of 76 x 76 nm? and z spacing of 340 nm. We typically obtained stacks representing
8um in total axial thickness starting at the embryo surface. The microscope was equipped with “HyD Hybrid Detector” avalanche
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photodiodes (APDs) that we utilized in photon counting mode. This is in contrast to our prior approach (Little et al., 2013) in which
standard photomultiplier tubes (PMTs) were used to collect two separate smFISH image stacks at two different laser intensities: a
low power stack for measuring transcription intensities, and a high power stack to distinguish single mRNAs. The use of low-noise
photon-counting APDs in place of standard photomultipliers provided sufficient dynamic range to capture high signal transcription
sites and to separate relatively dim cytoplasmic single mRNAs from background fluorescence with a single laser power. This also
abrogated the need to calibrate the high- and low-power stacks for comparison. The removal of the calibration step provided an addi-
tional reduction in measurement error.

Image analysis

Raw data are processed according to previously developed image analysis pipeline (Little et al., 2013). Briefly, raw images are filtered
using a Difference-of-Gaussians (DoG) filter to detect spot objects. A master threshold is applied to separate candidate spots from
background. True point-like sources of fluorescence are identified, as they appeared on multiple consecutive z-slices (>3) at the
same location. All candidate particles are then labeled as transcription sites, cytoplasmic transcripts or noise based on global thresh-
olds. The threshold separating cytoplasmic transcripts from noise is defined as the bottom of the valley between the two peaks on the
particle intensity distribution. The threshold for transcription sites depends both on intensity and position, as transcription sites clus-
terin z and are enclosed in nuclei (segmented from DAPI staining). Intensity of transcription sites is obtained by integrating the signal
over a fixed cylinder volume (Vs = = X 0.762 x 3.06 um®, determined from the objective’s PSF).

Calibration in absolute units

We calibrated the integrated intensity of transcription sites Fs by first characterizing the relationship between the fluorescence signal
and the density of cytoplasmic transcripts. We defined summation volumes in the embryo (V =3.8x3.8x8 um?) avoiding region of
high tissue deformation and excluding transcription site location. For each summation volume we counted the number of detected
cytoplasmic transcripts and integrated the fluorescence intensity. At low count density, the fluorescence per summation volume F
scales linearly with density D (Little et al., 2013). Fitting a simple linear relationship F = aD + (3, where 8 corresponds to background,
enables estimation of a scaling factor « to calibrate transcription sites in “cytoplasmic units” (C.U.) for each embryo. Namely, the
intensity in C.U. is given by f = (Fs — bVs)/a where b is the background intensity per pixel in each nucleus. The resulting quantification
of transcriptional activity for all gap genes is provided in Supplemental Data.

Measurement error
Embryo staging
In order to assess the timing of the different embryos, we first manually ranked the different embryos based on timing estimation from
DAPI staining. We estimated the interphase stage relying on morphological features of the nuclei (shape and textures) in the DAPI
channel. We then verified whether accumulation of cytoplasmic mRNAs correlates with our manual ranking (Figure S1A). Both ap-
proaches lead to similar results and provide a decent proxy for timing. By comparing the average activity of the different embryos
in the maximally expressed regions with the cytoplasmic density, we assessed the effect of timing on the mean activity (Figure S1B).
We estimated the Pearson correlation coefficient p for the different genes and regions (gt anterior and posterior regions). Overall,
timing explain up to p? = 44% of the embryo variability (defined as the variance of the mean activity among embryos ”;24) in the maxi-
mally expressed regions (Figure S1C), with the exception of kni that is highly correlated p ~ 0.8. We thus separated the kni embryos in
two sub-populations, early and late embryos. We performed the splitting by finding the cytoplasmic density threshold that minimizes
the sum of within-population variance in mean activity. We then calculated the staging variability osta = po,, defined as the variability
in mean activity explained by timing between late and early embryos (Figure S1D). Given the overall small staging variability <14%,
the total mean activity is stable enough to warrant the assumption of steady-state.
Imaging noise model
We quantified measurements noise due to imaging and calibration using a two-color smFISH approach, labeling each mRNA in alter-
nating colors along the length of the mRNA. We included 15 hb embryos in the analysis, which corresponds to approximately 4,000
nuclei activity measurements. We then normalized the activity (fluorescence signal) of the nuclei in cytoplasmic units independently in
each channel. In absence of noise and provided accurate normalization, both channels would perfectly correlate with slope one. By
plotting one channel against the other (Figure 2A), we assessed the slope and characterized the spread of the data along the ex-
pected line.

We build a simple effective model to describe measurement noise:

P(S(s), S®|G®), G¥) :/\/'(S(s) | p=G® a2 (G®))-N(S® | u= G®, a2 (G<3))) (Equation 1)
where S stands for the fluorescent signal in cytoplasmic units and G the total nascent transcripts (in C.U.) in absence of noise. We

assumed that the measurement errors were normally distributed and independent in both channels, which was motivated by the
absence of correlation in the background. We further assumed that the variance would depend on activities, consistent with the
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increasing spread observed in the data. In order to estimate the variance specific to each channel, we fitted a straight line y =ax +h
assuming error on both x=S®) and y=S©®. We expanded the variance as a function of the scalar projection along the line v:

?(V)= a2 +byv+bov? + -

Assuming the same error along x and y, we then maximized the following likelihood to estimate the parameters 6 = {a,h, oy, b1,
b27 .. }

151 v, — ax; — h)?
P({x;,yi} |0)= ,1:1 \/mexp(mz)az(vi)>

Using the Akaike information criterion, we selected the best model which was parameterized by (a, o5, b1, b2) with h = 0. The best
fitting parameters were: a = 0.968, g, = 4.59-102, b1 =9.31-103 and b, =9.23-10~* (Figure 2A). The variances in the noise mea-
surement model (Equation 1) are then given by:

0%(G) =0 (v: G2+ (aG)z)

a§(G)=UZ(V:\/m>

where ¢2(v) = o2 + b1v + bpv2. The resulting imaging noise is shown in Figure S1E. In the maximally expressed regions, we measure
transcriptional activity with an error of 5% and relate it to absolute units with an uncertainty below 3.5% (the largest deviation of the
slope 0.968 + 0.003 from 1). This represents an error reduction by 3- to 4-fold compared to our previous measurements (assuming
multiplicative errors; 6% versus 20%) (Little et al., 2013).

Splitting of the total variance

The Anterior-Posterior axis (AP) was determined based on a mid-sagittal elliptic mask of the embryo in the DAPI channel (Little et al.,
2013). Position is obtained by registration of high- and low-magnification DAPI images of the surface. We then fitted constrained
splines to approximate the mean activity as a function of the AP position. We used different features of the mean profiles such as
maxima and inflection points to refine the alignment between the different embryos. Overall, this realignment procedure enables
us to estimate an alignment error of the order of 2% egg length.

After alignment, we defined spatial bins along the AP-axis with a width of 2.5% of egg length. Such a width was a good compromise
to balance the sampling and binning error. We next sought to decompose the measured total variance of the transcriptional activity o2
(Figure 1D) into different components related to imaging, alignment, embryo and nuclei variability (Figures 2B-2D). We first estimated
the variability of the mean across embryos aﬁ in each bin (Figure 2B); we split the total variance o2 in each bin according to the law of
total variance:

2_1 ﬁ: 2, 1 i( 2

0" =— 0] ++— i —
Nei:1 I Nei:1 S
N ——

2 2
s Ty

where N, is the total number of embryos and u the global mean.
Next we aimed to determine what fraction of aﬁ is explained by residual misalignment. Assuming that all the variability in the mean
at boundaries results from spatial misalignment of the different embryos, one can find an upper bound on the residual alignment

error ay:
2
du
2y 2 _ 2
ouZaa” = (& oy

where u is the global mean profile as function of AP position x. For each gene, we estimated the residual alignment error o required to
explain as much embryo variability as possible (Figure S1F, diagonal dash line). Overall we found that oy is of the order of 1% egg

length. The total embryo variability in the maximally expressed regions cannot be explained by misalignment as (g-ﬁ) =0 and leads

to a noise floor (Figure S1F, horizontal dash line). This noise floor can be partly explained by variability in the stage (early versus late
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interphase) of the different embryos (Figures S1C and S1D). In the following we thus split ai =0
embryo to embryo variability.

Finally, we assessed what fraction of the total variance 2 corresponds to combined measurement noise o2, = aﬁng +02; where
a?mg was estimated in subsection (STAR Methods, Imaging noise model). Total measurement noise 2., remains below 20% of
the total variance for all genes and all position (Figure S1G), and on average reaches 6.1 + 3.5%. The remaining variability corre-

sponds to biological variability o2, = 02, + 02, Where a2, is the nuclei variability and was defined as:

2 2 i
+ 05, Where o2, is the residual

2 2 2

— 2
nue = 7(Timgf d

2
o Tali emb

Overall, the non-nuclear variability (aﬁng +02;+02,,) remains below 33% of the total variance for all genes and all position

(Figure S1H), and on average reaches 16.0 +6.4%. Thus, the nuclei variability 2, largely dominates in our data and represents
84% of the total variance on average (Figures 1E and 1F).

Single parameter distribution of transcriptional activity
Noise-mean relationship in the FISH data
In practice, we measure transcriptional activity in cytoplasmic units (intensity in equivalent number of fully elongated transcripts) and not
in Pol Il counts g directly. The measured mean activity u in cytoplasmic units is proportional to the mean Pol Il counts for a single gene
copy (9), i.e., u=C1Ny4(g) where C1€0, 1] is a conversion factor accounting for the FISH probe locations on the gene and Ny the num-
ber of gene copies (for most gap genes Ny = 4, except for gt male and hb deficient that only have 2 copies). Assuming independence of
loci, the measured variance o?follows a similar relationship, i.e., o° = CgNgo’g with C»€ [0, 1]. The conversion factors Cy and C; are con-
stants that are unique for each gene and are calculated further (STAR Methods, Conversion factor for Pol Il counts).

As we will see later (Equation 8), one can derive the following functional form for the variance in Pol Il counts for a single gene copy:

a2 =(9)+(9)(go — (9))®

where gg is the maximal mean Pol Il counts on the gene that is determined by the Pol Il initiation rate ki,; and elongation time 7, and &
a quantity that is related to the dynamics of the promoter activity and bounded @< [0, 1]. Of note, @ =0 for a constitutively expressed
gene such that the variance reduces to US =(g) (Poisson variance). In principle, the values of both go and @ are gene-specific and
could have specific dependency on (g). The interpretation of the equation above and the quantities go and ¢ will be discussed in
greater details later on (STAR Methods, Two-state model of transcriptional activity). Using the relationships between the cytoplasmic
units and Pol Il counts for the mean and variance above, we can express the measured noise as:

2 _
i:%(1+ 1 Ko /’LQ))
w2 Ci\u CiNg u

where g = C1Nggo is the maximal mean expression level in cytoplasmic units. In practice, C,/Cy =1 and C1=0.7 (Table S2, 5 probe
location) such that the Poisson noise background in cytoplasmic units is approximately 1/u. By setting C,/Cy = 1, we further simplify
the equation above and obtain:

0_2

—2=%(1 +a(1 — pu/uo)) (Equation 2)

=

with a = go®. By assuming a and p, constant, we found that the above noise-mean relationship (Equation 2) captures the overall
trend in the data well (Figure 3A), witha=9.93 + 0.35 and u = 53.07 + 1.73 (R?> = 0.99). Although both gt male and hb deficient follow
a similar trend, they deviate from the black line, (@ = 10.66 + 0.35, uy = 18.52+0.28) and (@ = 7.68 +1.00, uy = 29.57 +1.59) respec-
tively. Interestingly, despite the fact that go and @ could a priori be gene-specific, a is roughly conserved across genes and differ-
ences in u, can be explained by variation in gene copies (Ny =2 copies for gt male and hb deficient instead of 4) and gene length
(gt is shorter than hb, Table S3). This suggests that some key quantities underlying transcription are conserved among the gap genes
and can be highlighted by proper normalization of the measured activity.

Normalized cumulants for a single gene copy

To further investigate the transcriptional commonalities of the gap genes, we calculated the 2", 3" and 4™ cumulants from the data
(Figures 3B-3D). For independent random variables, the cumulants have the property to be extensive, which is convenient as the
measured transcriptional activities result from the sum of 2 or 4 independent gene copies. We first converted the k™ cumulants &
computed from the data in cytoplasmic units to Pol Il counts (or number of nascent transcripts) for a single gene copy with a normal-

ized gene length:
1 LO\*
Kk = (L) Ki
CiNg \ Ly
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where « is the k" cumulant in Pol Il counts for a single gene copy, Lg the gene length, Ny the gene copy number (4 for most genes,
except gt male and hb deficient that only have 2 copies) and Cx a conversion factor for the k" cumulant to ensure proper normali-
zation of the Poisson background (Equation 3 and Table S2). The annotated gene length L, varies between 1.8 to 3.6 kb for the gap
genes. In the following we used an effective gene length that is slightly larger and takes into account the possible lingering of fully
elongated transcripts at the loci (Table S3). This effective gene length can be estimated from the dual color FISH data (STAR Methods,
Dual color smFISH and effective gene length). For the normalization, we used a normalized gene length of (Ly) =3.3 kb.

We then fitted a second order polynomial of the mean activity (g) to the variance 05 (Figures 3B and S2A) in order to estimate the
maximal activity go, which was defined as the second crossing point between the Poisson background (Figure S2A dash line) and the
fitted variance (solid line). We found g = 15.21 + 0.20 Pol Il for a normalized gene length of 3.3 kb. Similarly, we fitted 3" and 4™ order
polynomial of the mean activity to the cumulants xzand k4 (Figures 3C and 3D), constrained to reach the Poisson limit at go. Of note,
the cumulants of the Poisson distribution are all equal to the mean. As we observed in Figures 3B-3D, the polynomial fits (solid lines)
capture the main trend observed in the data, suggesting a simple relationship between the cumulants and the mean. It follows that the
underlying activity distribution is essentially a universal single parameter distribution whose parameter is the mean activity. To test the
extent of the universality, we repeated the analysis above of each gap gene individually (Figures S2B-S2D). The individual fits
(colored solid lines) remain relatively close to each other. Although the fits for hb slightly deviate from the other genes, the global
shape of the cumulants is conserved.

Conversion factor for Pol Il counts

As mentioned above, the cumulants of the transcriptional activity in cytoplasmic units are related to the cumulants in number of
nascent transcripts or Pol |l counts on the gene by conversion factors Cy. We calculated these conversion factors to ensure proper
normalization of the Poisson background, meaning that the conversion of cumulants in C.U. for a constitutive gene would yield the
correct cumulants in Pol Il counts. Knowing the exact location of the fluorescent probe binding regions along the gene, one can calcu-
late the contribution of a single nascent transcript to the signal in C.U. as a function its length /:

s()) :% > H(I - 1) :%b(l)
i=1

where H is the unit step function, /; the end position of the /" probe binding region and N the total number of probes. Here, we made
the assumptions that each fluorescent probe contributes equally to the signal and each transcribed probe region bound. The number
of probes bound to a transcript of length / is given by b(/) and will be denoted b; for le (I;, /;. 1] with Iy, 1 =Lg4 the length of a fully elon-
gated transcript. The total fluorescent signal s in cytoplasmic units for g transcripts is given by

1N
s=5 ) bigi
e

N

where g = > g;, with g; the number of transcripts whose length / belongs to the length interval (/;,/;,1]. Assuming that g; follows a
i=1

Poisson distribution with parameter % = kiniti where 7; = (/i1 — I;) /kelo, the mean fluorescent signal (s) is then given by

L 1N 1L
(s) =N ;bi<gi> =N ;bikinm— <N ;bm KiniTe = C1(9)
c

where 7;=1;/7¢ = (li.1 — I;)/L and C1 the conversion factor that relates the mean number of transcripts (g) to the mean fluorescent
signal (s) in cytoplasmic units. This relation remains valid for the two-state model with (g) =kinite (n) (Equation 7).

As for the mean, one can calculate the conversion factors for the higher moments and cumulants assuming a Poisson background.
The second moment is given by

(s?) = # <Zj:b;b,-gfg,> = # <bebj (91)(g)) + be (g? >>

i#j

- # (Zb,’bjkizniT,-Tj +y b? kg7t + kmm)>

i#j i
1
= W <Zbibfki2ni7f7/ + Zb,-zkini'l',)
ij i

where (g;g;) = (9i)(g;) since initiation events are assumed independent. This only holds for the Poisson background and is no longer
exact for the two-state model as the switching process would introduce correlations. Nevertheless, the conversion factors for the
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higher moments and cumulants calculated below remain a good approximation under the two-state model, provided most probes
are located in the 5’ region. The variance of the signal is finally given by

N N
(s = (8))%) = (%) ~ (%) = g > bk = (# Zb,?ﬁ) 9)=Cx(0)
i=1 i=1

Ca
The calculation above can be generalized to the 3™ and 4™ cumulants. We found the following correction factor for the Poisson
background:

=171

1
Cr :WZN bk7 fork=1, -, 4 (Equation 3)
Calculated values of Cy for each gene and two different configurations of probe locations (5’ or 3’ region) are given in Table S2.

Two-state model of transcriptional activity
Master equation
Transcriptional activity of a single gene copy was modeled as a telegraph process (on-off promoter switching) with transcript initiation
occurring as a Poisson process during the ‘on’ periods (Peccoud and Ycart, 1995). Within the two-state model (Figure 3E), the dis-
tribution of nascent transcripts on a gene results from random Pol Il initiation in the active state coupled with elongation and termi-
nation (Choubey et al., 2015; Senecal et al., 2014; Xu et al., 2016). For simplicity, we combined elongation and termination as an effec-
tive process that was modeled as a deterministic progression (constant Pol |l elongation rate). In addition, we assumed that all the
kinetic rates of the model are constant in time and identical across embryos. The kinetic parameters of the model are the initiation rate
kini, the promoter switching rates ko, and ko, and the elongation time 7o = Lg/kelo.

The master equation that governs the temporal evolution of nascent transcripts at loci is given by

%Pt(g,n) =KiniOnm (Pe(9 — 1,n) — Pe(g,n)) + ko Pr(g,n — 1) — ka1 1Pe(g,N) (Equation 4)
with g the number of nascent transcripts (or alternatively the number of Pol Il) on the gene and n the promoter state. We used the
convention that n=1 and n=0 correspond to the ‘on’ state and ‘off’ state respectively, and the following periodic conditions
n=—1=1and n = 2=0. Here, § stands for the Kronecker delta since initiation only occurs in the active state. Of note, we only
considered the promoter switching and the initiation of elongation (Eq. 5); we did not explicitly model release of transcripts after termi-
nation. The rationale is the following; only the initiation events occurring during the time interval [t — 7, t] contributes to the signal at time
t,i.e., the elongation time 7, determined the ‘memory’ of the system. This is correct as long as the release events are instantaneous and
termination is fast compared to elongation. Thus, the dynamics of nascent transcripts accumulation on the gene for t < 7, is obtained by
solving the master equation with zero initial transcript on the gene Py, (g) = 640 and an arbitrary initial distribution of promoter state.
Summary statistics

We can derive the temporal evolutions of the central moments from the master equation (Equation 4) (Lestas et al., 2008; Sanchez
and Kondev, 2008). The means of nascent transcripts g and promoter states n satisfy the following equations:

d

o (g(t)) =kini(n (1))

Equation 5
d (Eq )

i

At steady state (% (n) = 0) , the mean occupancy of the promoter is simply given by (n) = kon/(Kon + Koff). Similarly, the covari-

ance satisfies the following set of equations:

n(t)> :kon - (kon +k0ff)<n(t)>

%Ug(t) = 2kini¢7gn (t) +kini (ﬂ(t)>
(%ag,,(t) =kini 02 (t) — (Kon + Koft)ogn(t) (Equation 6)
2(0)= — 2kan + ko) 3(0) +hon(1 — {(0)) +hon{n(0)

Assuming zero initial transcripts and promoter at steady state, one can solve both the mean and variance for g. Thus, the initial
conditions are given by (g(tp)) = 0, (n(to)) = kon/(kon + Kot), aé(to) = 0, agn(to) =0 and a2 (to) = (n(ty))(1 — (n(t))). Solving these
equations (Equations 5 and 6) for the elongation time t =7, leads to:

(9)=90(n) (Equation 7)
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a2 =go(n) +g5(ny(1 — (n) (7 /7n) (Equation 8)

where gg =kiniTe is the maximal mean nascent transcript number or equivalently the mean number of transcripts in a constitutive
regime (gene always ‘on’) and @< [0, 1] a noise filtering function that takes into account the fluctuation correlation times. Here, the
relevant timescales are the elongation time 7. and the promoter switching correlation time 7, = 1/(kon + Koft). The variance 05 results
from the sum of two contributions; the Poisson variance go(n) stemming from the stochastic initiation of transcript and the propa-
gation of switching noise:
2
(82) cAotea/mn) =gt — o) otz
(n) —————

binomial variance
For deterministic elongation, we find that the noise filtering function is given by:

exp(—x)+x —1

In the limit of fast and slow promoter switching respectively, the noise filtering function reduces to

Te > T,,le o(x)=0

Te <K Tplimd(x) =1
x—0

Thus, the noise is minimal in the fast switching regime 7, > 1, and reaches the Poisson limit as = go(n). While in the slow switching
regime 7o < T, none of the switching noise is filtered and the variance is described by a second order polynomial of the mean oc-
cupancy (n), i.e., ag = go(n) + g3(n)(1— (n)). Of note, for exponentially distributed life-time of transcripts, such as cytoplasmic
mRNA subject to degradation, the results above remain valid except that the noise averaging function becomes ®(x)=1/(1+x)
with 7, the average life-time of the transcripts.

Following a similar approach as in the previous paragraph, higher order moments and cumulants are analytically calculated from
the master equations (Equation 4). The cumulants up to order 3 are equal to the central moments while higher order cumulants can be
expressed as a combination of central moments. The 4" cumulant is given by x4 = g — 3;13, where u, is the 4" central moment and
u the variance. Assuming promoter at steady state, we solved the equations for 3™ and 4™ moments of g and derive the following
analytical expressions for 3™ and 4" cumulants, k3 and kq:

k3 =go(n) +3g5(n)(1 = (1)) 1(7e /) +G5(n)(1 = (M) (1 — 2(n)) P2 (7e /7n) (Equation 9)

ke =Go(n) +795(n) (1 — (1)) @ (7e /) +6g5(N)(1 — (M))(1 = 2(n)) P2 (7e /70) + G5 (N) (1 — (M) (P3(7e/Tn) — B(N)(1 — (n)) Pa(7e/Tn))
(Equation 10)

where &4, ®,, &3 and @4 are noise filtering functions that vanish in the fast switching regime (7. > 7,) and tend to one in the slow
switching regime (¢ < 75):

exp(—x)+x — 1

@1()():2 P

x exp(—x)+2 exp(—x)+x — 2

By(x)=6 =

X2 exp(—x) +4x exp(—x) + 6 exp(—x) +2x — 6

@3(X)=12 @

exp(—x)” +4x2 exp(—x) + 20x exp(—x) + 28 exp(—x) + 10x — 29
x4

§D4(X) =2
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The above expressions for the cumulants are exact and were tested numerically. The cumulants are polynomials of the mean pro-
moter activity (n), which follows from the propagation of the binomial cumulants from the switching process. Since the cumulants are
extensive, the cumulants for Ny independent gene copies are obtained by multiplying by Ny the expression for a single gene copy
(Equations 8, 9, and 10).

Cumulant analysis

Noise-mean relationship and cumulants predicted by the two-state model

Within the context of the two-state model, we tested whether any transcriptional parameter modulations could explain the global
trends in the noise and the cumulants (Figures 3A-3D). Since we showed based on the cumulants that the distribution of activity
is a single parameter distribution, we restricted the analysis to single parameter modulations of the mean activity (Figures 3F-3I).
It is worth mentioning a few important observations that will simplify this task.

First, we see by close inspection of the steady state cumulants (Equations 8, 9, and 10) that 7, sets the scale, i.e., all parameters are
defined with respect to 7.. In practice, the cumulants only depends on the three following independent parameters Rini = KiniTe,
Ron:konq-e and Roﬁ = KoffTe. Thus, there is some freedom to set the scale of these rates. Here, we used 7, =2.2 min that is
approximately the Pol Il elongation time for the normalized gene length (3.3 kb and ke, = 1.5 kb/min; (Garcia et al., 2013)) and it
will be considered fixed. Second, the magnitude of ki, determines whether the Poisson (first term o ki) or the binomial (second
term ocki%i) components dominates in the expression of the variance (Equation 6). We immediately see that increasing the mean
Pol Il number on the gene (g) by only modulating ki, cannot explain the data, since it would lead to a monotonic increase of the
variance whereas the observed trend is concave with a global maxima at mid-expression levels. The only way of achieving such
a trend is by modulating (n) provided the binomial term dominates the Poisson one. This condition implies that ki, has to be suffi-
ciently large for intermediate value of (n), i.e., kini > 1/(7e(1— (n))®(7e/7n)). Alternatively, if kini is known, this inequality sets
some constraints on the possible values of 7,. Third, it is possible to give an estimate of ki, from the polynomial fit of the
measured variance (Figure S2A and Figure 3B). The second intercept of the fitted curve (black line) with the Poisson background
(dash line), which should occur at (n) = 1, allows us to estimate go. Assuming ki is maintained constant as (n) is modulated, we
have go = kinite = 15.21, which gives ki, =6.99 min! for 7, =2.2 min (see above).

We then investigated three different type of single parameter modulation to vary the mean Pol Il number (g) consistent with the
observation above, namely, modulations of the mean occupancy (n) from 0 to 1 by either varying kon alone, ko alone or both ko,
and Ko while keeping the switching correlation time 7, constant. The latter modulation also corresponds to single parameter mod-
ulation since kon = (n) /7, and kot = (1 — (n)) /7, are then fully determined by (n). For each of these three types of modulation, one
parameter is free (either ko, kon OF 7,) and sets the amplitude of the cumulants (Figure S2E). In order to infer these free parameters,
we fitted (maximum likelihood) the measured cumulants with the modeled ones (Equations 8, 9, and 10) predicted by each modu-
lation strategy (Figures 3G-3l). We found:

1) kon modulation: ko =0.142 min™" and kon = Kot (n)/ (1 — (n))
2) kot modulation: kon =0.075 min™' and kot = Kon(1=(n))/(n)
3) (n) modulation at fixed 7,: 7, =2.9993 min with kon = (n) /7, and kot = (1 — (n)) /7

We then calculated the noise-mean relationship (Equation 2). We also show an example of a ki,; modulation alone (Figure 3F, gray
line); no matter the value of (n) and 7, this modulation cannot reproduce the trend in the data as explained above. The modulation of
kot alone (green line) fails to capture the noise at low expression (Figure 3F). On the other hand both the modulation of ko, alone (blue
line) and n at constant 7, (red line) provides good qualitative agreement with the data (Figures 3F-3I). As mentioned above, it is impor-
tant to keep in mind that the units of kin;, kon, kot @and 7, estimated here depends on the value of the elongation rate. Here, we used a
conservative estimate of ke, = 1.5 kb/min (Garcia et al., 2013), which is possibly too small for the gap genes (Fukaya et al., 2017). A
different elongation rate would simply imply a rescaling of the rates and the correlation time without affecting the fitting results (STAR
methods, Effect of elongation rate on inference). Namely, the mean occupancy (n) would remain unchanged while the rates would be
rescaled by a factor k. /keilo and the correlation time by keio /K, Where k7, corresponds to the new elongation rate.
Time-dependent cumulant analysis
Next, we investigated whether the single parameter modulation fitted above assuming steady state are consistent with the finite dura-
tion of the nuclear cycle (approximately 15 min in nc13). Namely, assuming all the data were taken at mid cycle, we asked under each
modulation scenario whether steady state could be reached in a timely manner (mid cycle), as supported by our staging analysis
(Figures S1A-S1D) and other studies (Garcia et al., 2013). The relaxation time to steady state is determined by the switching corre-
lation time ,. By solving the equation for the temporal evolution of the mean Pol Il number (g(t)) (Equation 5) with initial condition
(g(t=0)) =0 (no Pol Il on the gene) and (n(t=0)) =0 (gene initially ‘off’), one finds:

go(n) <é+:—:(exp(—t/rn) - 1))Z‘£Te

(9(t) = )
9o(n) (142 xp(/5,)(1 = exp(re/7) )74

e
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As mentioned above, the relaxation of the mean (g(t)) to its steady state value (g) =go(n) is determined by the correlation time 7,
through the exponential factor exp( — t/7,). As 7, increases, the relaxation gets slower and slower (Figure S3A). It follows that the
finite duration of nc13 should set some upper bound on the possible value of 7,. According to Figure S3A, 7, should not exceed
3 min for (g(t)) to reach approximately 90% of the maximum activity go ((g) =go for (n) = 1) at mid cycle as observed in the data
(Figure 3B).

Each of the three single parameter modulations fitted above predicts different dependency of 7, on the mean occupancy (n) (Fig-
ure S3B). Importantly, these values of 7, were obtained for ke = 1.5 kb/min (Garcia et al., 2013). A larger elongation rate would lead to
smaller correlation times (Fukaya et al., 2017) (STAR methods, Effect of elongation rate on inference). The main benefit of using a
potentially smaller elongation rate, it provides a stronger guarantee that the time-dependent solution reaches steady state in time
(as the relaxation is slower). For each modulation (Figure S3C), we estimated what fraction of the steady state value (g(t))/(g) is at-
tained as a function of (n) at mid cycle (t =7.5 min). It turns out that the ko modulation clearly fails to reach steady state in time for
higher occupancy, whereas both modulation of k., and n at fixed 7, cover the measured range of activity at mid cycle (0 to 90% of go).
Each modulation predicts different boundary formation dynamics (Figures S3D-S3F). For kon, the highly expressed regions (large (n))
relax much faster than the lowly expressed ones (small (n)), whereas for ks it is the opposite. Interestingly, at fixed 7,,, each position
relaxes in synchrony and the activity ratio between them is conserved. The latter modulation appears more consistent with previous
experimental observations (Dubuis et al., 2013; Garcia et al., 2013).

Next, we investigated the shape of the higher order time-dependent cumulants. Although the higher order time-dependent cumu-
lants can be calculated from the moment equations, their analytical expressions are cumbersome. Alternatively, one can calculate
the time-dependent cumulants directly from the time-dependent distribution of Pol Il P;(g), which is easily computed numerically.
With the same initial condition as the mean above, the time-dependent distribution of Pol Il P:(g) is given by:

S Pig.n|g'=0,n=0)t<r,
— n
9=\ P01l =0.7)Pr (0" =0}t > 7,

nn'

Py(

where P:(g,n|g’,n’) is the propagator of the telegraph model (STAR Methods, Distribution of nascent transcripts, Equation 12) and
Pt(n|n") the propagator of the switching process alone:

Pe(n,n") = (6p1{N) + 6n0(1 — (n)))(1 — exp(—t/7n)) + O EXP(—t/75)

We then computed the 2™, 3" and 4™ time-dependent cumulants from P;(g) for each fitted modulation (Figure S3G). Provided the
elapsed time is sufficiently large compared to the correlation time and the elongation time, the time-dependent cumulants closely
follow the steady state solution. Thus, both the modulation of k,, alone and n at fixed 7, fitted assuming steady state predicts
time-dependent mean versus cumulant curves at mid cycle (t=7.5 min) that are consistent with the data. In addition, under these
conditions, the time-dependent mean activity closely reflect the time-dependent mean occupancy (n(t)):

it +:—Zexp(7t/7,,)(1 — exp(7e/Tn))
(

9o 1 —exp(—t/m)

=1

(n(t)t>7e

Together itimplies that even away from steady state, provided the elapsed time is sufficiently large (t > 7¢,7,), the inference based
on steady state solutions should yield good estimates of the parameters. Indeed, for fixed 7, the relationships between the mean and
the cumulants at steady state are uniquely determined by ki, (n) and 7,. As long as time dependent-cumulants run along the steady
state curves (Figure S3G), the estimation of ki, and 7, will be correct while the estimation of the mean occupancy will in fact corre-
sponds to the instantaneous mean occupancy (n(t)) as (g(t))/go=(n(t)).

Inferring transcription kinetics of endogenous genes from dual color smFISH

Dual color smFISH and effective gene length

We performed dual-color smFISH tagging the 5’ and 3’ regions of the transcripts with different probe sets (Figure 4A and Table S1).
After normalization in cytoplasmic units, both channels offer a consistent readout of the mean and the variability (Figures S4A and
S4B). For each gene, given the 5’ and 3’ FISH probe configurations and assuming constant elongation rate, we calculated the ex-
pected ratio of 3’ over 5’ signalr = Cﬁs)/Css) according to Equation 3 using the annotated gene length (Figures S4C and S4D and Table
S3). The predicted ratios are consistent with the measured ones, albeit with small deviations likely stemming from termination (Fig-
ure S4E). This suggests that nascent transcripts might be retained at transcription sites for a short duration. We then calculated for
each gene, the effective length that would be consistent with the measured ratio (Figure S4F and Table S3). Assuming an elongation
rate keio = 1.5 kb/min (Garcia et al., 2013), we estimated the lag consistent with the length difference between the effective and an-
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notated length (Figure S4F inset). Nascent transcripts remain at the loci for at most 35 s, which remains small compared to the typical
elongation time for the gap genes 7. ~ 2 min. In this study, we used the effective elongation time for each gene that includes the short
lingering time, which was calculated from the effective gene length.

The two channels enable estimation of the total nascent transcripts (5’ channel) and the fractional occupancy of transcripts along
the 5’ and 3’ portions of the gene at each locus (Figures 4B and 4C). Because the 5’ and 3’ activities are temporally correlated through
the elongation process additional information about transcription can be extracted that is not available with a single channel/color
(Figures 4B and 4D). Combining measurements from multiple embryos (Figures 4C and 4D), we select nuclei at similar positions
(bins of 2.5% egg length) to generate the joint distribution of 5’ and 3’ activity across AP position bins (Figure 4D).

Distribution of nascent transcripts

Modeling the joint distribution of 5’ and 3’ activity based on the two-state model requires first to calculate two key distributions,
namely the steady-state distribution of nascent transcripts (or Pol Il number) on the gene and the propagator that describes the tem-
poral evolution of an arbitrary distribution of nascent transcripts. Both distributions can be derived from the master equation
(Equation 4). Although the master equation can be solved using generating functions (Xu et al., 2016), we followed another route
that can be easily extended to multi-state system and remains computationally tractable. The master equation can be written in terms
of an operator A containing the propensity functions of the different reactions:

d —~
apt(g7n) :APt(g7n)

After appropriate truncation on the transcript number (setting an upper bound for the maximum number of nascent transcripts)
(Munsky and Khammash, 2006), the A operator can be written in terms of a sum of tensor products of different matrices:

A=IgON, +Kz®R> (Equation 11)

with /g standing for the identity matrix of size G + 1 where G is the maximum number of transcripts after truncation. The matrix N,
encodes the rates of the possible transitions for the two-state promoter and R. indicates in which promoter state initiation occurs:

[k kot |5 [0 O
vl Sl

while Kg describes the initiation of transcripts:

0
kini 0
0
0 0 kini _kini
The propagator of the resulting finite system can be expressed as a matrix exponential of the A operator:
Pi(g,nlg'.n’,0) =exp(At) (Equation 12)

where 6 stands for the set of kinetic parameters (kini,kon,Koft). Although the propagator explicitly depends on the kinetic parameters,
we chose to omit 4 in the following for readability. The propagator dictates how an initial joint distribution of transcript and promoter
state P(g’,n’) evolves after time t in P(g,n):

P(gan):Zpt(g7n|gl7nl)P(g’7nl)

an

The distribution of nascent transcripts P(g) for a gene of length Ly is typically calculated using the propagator above with
t=1¢=Lgy/keio the elongation time and the initial conditions. Since 7, sets the ‘memory’ of the system, P(g) can be calculated
with initially zero nascent transcript on the gene and is then given by:

P(@)= > P.(g.nlg',n")bgoP(n) (Equation 13)

ng'.n'

where P(n) specifies the initial distribution of promoter state. The distribution P(g) can be computed efficiently by directly estimating
the action of the initial vector on the matrix exponential (Sidje, 1998). Assuming the promoter at steady state, P(n) is then given by:

n) forn=1
P(n):{1 <— 2n> forn=0

with the mean occupancy (n) = kon/(Kon + Koff)-
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Provided each gene copy is independent and undistinguishable, the combination of two and four gene copies can be represented
by a three- and five-state promoter model. The corresponding N and R matrices are given by:

—2kgn Kot 0 000
Ns=| 2en —(kott+kon) 2koy |Rs=|0 1 0

0 Kon —2Kof 0 0 2
—4Kon Kot 0 0 0
4k°,-| —(koff + 3k0n) 2koff 0 0
Ns = 0 3kon —2 (Kot + Kon) 3Koft 0
0 0 2Kon —(Bkott + Kon)  Akos
0 0 0 Kon — 4Kt
0 0 0O0O
01000
Rs={0 0 2 0 O
0 0030
0 0 0 0 4

The distribution of nascent transcripts is calculated according to Equation 13, with the propagator Py(g, n|g’,n") computed from the
updated A operator (Equations 11 and 12). The steady-state distribution of the Ng-gene copy system is given by:

P(n)= (Ing ) (M"(1 — (M) with ne {0,1,2, -+, Ny } (Equation 14)

where n=Kon/(Kon + Kof) is the steady state mean occupancy of a single promoter.

Joint distribution of 5' and 3’ activity

Here, we lay out the approach used to calculate the joint distribution of 5’ and 3’ activity for an arbitrary configuration of 5’ and 3’ FISH
probes. Analytic solutions for steady-state distributions with idealistic single color probe configuration exist (Xu et al., 2016), but so-
lutions for arbitrary probe configurations and multi-color FISH are cumbersome. Here, the computational approach is general enough
and can be applied to a large class of transcription model, at or out of steady-state (transient relaxation), provided the elongation
process is assumed deterministic.

The measured 5 and 3’ transcriptional activities result from partially elongated nascent transcripts. Each fluorescent probe is
assumed to be instantaneously bound and to contribute equally to the total fluorescence. Thus, the fluorescent signal of each
nascent transcript is proportional to the number of probe binding regions that have been transcribed. In order to calculate the joint
distribution, one needs to proceed backward in time. Starting from the 3’ end up to the 5’ end of the gene, we accumulate the contri-
bution of nascent transcripts to the signal that could have been initiated in the interval separating two successive probe regions.
Since we assumed elongation to occur at constant speed, the distance between two successive probe regions can be converted
into a time. Doing so for each interval leads to the following temporal hierarchy (Figure S4G). We used the following naming conven-
tions for the durations t,.(c>: the superscript (C)e {(3), (5)} stands for the probe channel, either (3) for the 3’ probes (red channel) or (5)
for the 5’ probes (green channel), whereas the subscript i denotes the interval separating probe i from probe i — 1 where increments
are performed along the 3’ end to 5’ end direction.

For instance, if the 5’ and 3’ signal is measured at time t = 7¢, only transcripts initiated during the time interval [0, tﬁs)] fully contribute
(1 C.U.) to the 3’ (red) signal, since only those get fully bound by 3’ FISH probes. On the other hand, transcripts initiated during
[tgs), tgs) + t(zs)} will contribute less to the signal since the last probe region has not yet been transcribed at the time of the measurement
t = 7. Thus, the individual contribution of these transcripts to the total 3’ signal is (k — 1) /k C.U., where k is the total number of
probes for the 3’ channel. As we will see below, the probability to initiate g nascent transcripts during any duration t,-(c> is given by
the propagator P, (9,n|0,n") (Equation 12), where n and n’ are the promoter states before and after t}c).

For any model of promoter activity that only consider the stochastic initiation of transcripts (as a Poisson process) and deterministic
elongation with instantaneous release, the propagator will satisfy the following equality:

Pt(gvn‘g/vn/):PT(g_g/an|0an/)

Thus, one only needs to calculate P:(g, n|0,n’)=P(g,n|n’), which can be computed much faster than the matrix exponential
(Equation 12) (Sidje, 1998). It then follows that the Chapman-Kolmogorov equation for the time propagation reduces to a discrete
convolution:

92
Py, +,(92, N2|no) = Z Z Pt (g2 — g1,n2|n1)Pt, (91, n1|no)

ny g1=0

This property is used extensively in the following calculation of the joint distribution.
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The computation of the joint distribution is performed according to a dynamic programming approach that can in principle be
applied to an arbitrary number of color probes. We first calculate recursively the 3’ contribution (red probes) to the signal P(® (Gk,
Gk, nk), where G stands for the total signal in probe space, Gi the total number of nascent transcripts, nx the promoter state and
k the total number of probes covering the 3’ region. We then calculate the 5’ contribution in a similar fashion, P<5>(Gk,no). Lastly,
we combine both components to generate the final joint distribution P(C;‘( ), G )) in probe space.

Step 1: calculate the 3' contribution. The initial distribution is given by:

&doublehyphen; 38pté,

Gs
- ———
3) (Gz, Gz,nz) =P® | (k — 1)g> + kg1 ;g2 +g1,Ny | = ZP@ (Qz7n2|’71)Pt§3> (g1,n1|no)P(n1)P(no)

No,N4q

where P(ng) and P(n+) are the initial distributions of promoter state at time t, =0 and tsa) respectively. Assuming promoters at steady
state, both distributions are then given by Equation 14 for a multi-gene system. We then perform the following recursion scheme for
i={3,-,k}:

P (GG = Z%fPt<s (9.l )P® | Gy — (k ~i+1)91.Gi — gy
Ni-1 gi= - G

Gi-1

where gmax = min((Gi/(k —i + 1)|,G).
Step 2: calculate the 5’ contribution. The initial distribution is given by:

P® <é1 »M |no> =P® (kgs,n1|no) =Pt§51 (g1.n1] no)

We then perform the following recursion scheme forj = {2,--- k}:

- Gmax
p® <Gi7ni‘n0) Z Zpr@ gi,ni|ni— 1) < i — (k—i+1)g;,ni_4 |’70>

ni1 gi= -
Gi1

where gmax = |Gi/(k — i + 1)]. Lastly, we sum out n:
(Gk|ng> ZP (Gk,nk\no)

Step 3: combine 3' and 5’ contributions. The final joint distribution of 5’ and 3’ activity in probe space is then given by:
Gmax - -
P(6%.6%)=3> Po(6” ~kan)P (67, G.n)
n G=0

where Grax = [G(s)/kJ. P®) and P®) are the joint distributions computed at step 1 and 2. Since the actual signal resolution is of the
order of 1 cytoplasmic unit (a fully tagged transcript with k fluorescent probes), the joint distribution can be coarse-grained by aggre-
gating the states G by a block of size k corresponding to a single cytoplasmic unit. The coarse-grained distribution will be denoted
P(G® G®) in the following. In addition, it is possible to compute P(G®), G(®)) faster and with good accuracy using a reduced effec-
tive number of probes k, provided the original probe configuration is well approximated. Lastly, we remind the readers that P(G(®),
G®)implicitly depends on the kinetic parameters (kini, kon, koif) through the two-state model propagator, the elongation rate and
the position of the probes through the temporal hierarchy (Figure S4G).

Likelihood and inference

We modeled the joint distribution of 5’ and 3’ activity based on the two-state model and the exact probe location assuming steady
state and constant Pol Il elongation rate (Figure 4E; STAR Methods, Joint distribution of 5’ and 3’ activity). The resulting modeled
activity distribution, together with the measurement noise model (Figure 2A; STAR Methods, Imaging noise model), enable calcu-
lating the likelihood of the 5’ and 3’ activities in C.U. (i.e., Data) given a set of kinetic parameters (kini,Kon. ko). Specifically, the likeli-
hood of the data Data {S ®)'s 3)} given the parameters 6= (k|n|,k0n,koff) is expressed in terms of the measurement noise model
P(S®),8®|GO), G®) (Equatlon 1) and the joint distribution P(G®),G® | §):

P(Datalf) = H Z P(s fa)lG(s),G(3)>P(G(5>7G<3) |6)

G®) GO
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where Np is the total amount of data, i.e., the total number of measured nuclei per AP-bin for a given gene.

The general idea underlying “classical” inference is to maximize the probability of the data under some model, namely to find the
parameters (Kini, kon, kKot) that maximize the likelihood of the data P(Datalkini, kon, Koft)- In this manuscript we adopted a Bayesian
approach, estimating the probability of the kinetic rate parameters of the two-state model given the observed data (i.e., the joint pos-
terior distribution) P(kini, kon, Kof|Data) using Bayes’ rule:

P(Data|kini7konakoff)P(kiniskonykof‘f)
P(Data)z fP(Data|kini7komkoff)P(kinh on~,koff)dkinidkondkoff

P(kiniykon, koffIData) =

where P(kini, Kon, Koft) is the prior that encodes for prior knowledge about the parameter values. We used a non-informative and in-
dependent prior for each kinetic parameter, which was chosen as log-uniform P (Kini,Kon,Koff) = 1/ (Kini-Kon -Koff). Note that in absence
of a prior P(Kini, Kon, Kof), the most likely parameters are the ones that maximize P(Data|kini, kon, Koft). In that case, the Bayesian
approach is essentially equivalent to “classical” maximum likelihood. The main advantage of the Bayesian approach over maximum
likelihood is that it provides a natural way to estimate the uncertainty on the parameters through the joint posterior and allows us to
determine whether the parameters are identifiable. Indeed, as the uncertainty grows, the posterior distribution becomes wider/flatter,
which directly reflects on the range of the parameter confidence intervals.

Importantly, we set the elongation rate k¢, to the experimentally measured value of 1.5 kb/min (Garcia et al., 2013). At steady state,
aknown value of kg, is required to set the temporal scale of the other transcriptional parameters, which can be seen by inspecting the
expressions of the various cumulants of the nascent transcript distribution (Equations 8, 9, and 10). Since all cumulants can be
parameterized by the three independent parameters go = Kini/Kelo, N =Kon/ (Kon + Kotf) and the ratio ¢ /7, = (kon + Koff) /Kelo, it fOllows
that the model is not identifiable when the temporal scale is not set.

We then sampled the joint posterior distribution P(kini, kon, kKoff| Data) using a Markov chain Monte Carlo (MCMC) algorithm (Hast-
ings, 1970), for each gene and at each AP position individually. The sampled joint posterior distribution enables estimation of the mar-
ginal posterior distribution for each kinetic rate and any combination of these rates, such as (n) and 7,. All the parameters of the
model and the error bars were estimated from the marginal posterior distribution, as the median and the percentiles respectively (Fig-
ure 4E). The best-fitting distributions predicted by the model match the data closely (Figure S5B), and outliers are mainly explained by
measurement and binning noise. Importantly, our inference approach does not require any a priori assumptions about the underlying
parameter modulation, nor does it assume any continuity between datasets. In principle, the inferred parameters could be different
for each gene and be modulated in any arbitrary way.

Parameter identifiability and performance

As mentioned above, the two-state model is fully identifiable (structural identifiability) as long as keois fixed. Indeed, in that case the
steady state and time-dependent solution depend on three independent parameters, such as (Kini, kon, Kof) O (Kini,(n),75). In principle,
provided one has enough data and measurement noise is small, each parameter can be resolved individually. On the other hand, it is
true that some regimes might require a very large/infinite amount of data to infer the different parameters without ambiguity (practical
identifiability). For instance, in the case of instantaneous bursts, namely when ko and ki become large (i.e., approach infinity, but
with finite ratio), only the burst size b = kini /Kot @and the burst frequency f = ko, are well defined. Thus it is not possible to infer the exact
values of ki, and ko individually. Such a scenario can be clearly diagnosed based on the marginal posterior distributions P (ki,|Data)
and P(kos|Data) (from which the median and the error bars of the parameters are estimated). Indeed, since we used non-informative
priors, the variance of these marginal posterior distributions would become extremely large and thus less informative. More intui-
tively, kini and ko would no longer be sharply peaked around a mean value, but would take all possible values (consistent with
the prior) that satisfy b = kini /Kot = SOme error on b. This would consequently lead to to very large error bars on ki and Kof. Thus,
the error bars extracted from the marginal posterior distribution are indicative for whether or not we can estimate these parameters.

To validate our inference framework, we tested the inference on simulated data using a broad range of parameter values and in
presence of measurement noise. Using the Gillespie algorithm (Gillespie, 1977), we generated simulated nuclei activity data based
on 4 independent gene copies modeled by the telegraph model. We used the probe configuration and gene length of hb and
assumed a typical elongation rate of 1.5 kb/min (Garcia et al., 2013). Measurement noise was included in the simulated data accord-
ing to the characterization performed previously on real data (Imaging noise model). We investigated different parameter regimes and
modulation schemes of the mean activity (g), to test whether the input parameters used to generate the data could be inferred prop-
erly (Figures S6A-S6E). Namely, we tested:

1) Modulation of the initiation rate kini alone with 7, =2 min and (n) = 0.35 (cyan dash line).

2) Modulation of the on-rate ko, alone with ki, =7 min~! and Ky = 0.25 min™’ (green dash line).
3) Modulation of the off-rate ko alone with kini =7 min™" and ko, =0.25 min™ (blue dash line).

4) Modulation of the mean occupancy (n) alone with kini=7 min" and 7, =2 min (red dash line).

For each scenario, we generated 8 batches of data covering the range of normalized activity (g)/go. Each batch was made of 10
independently sampled datasets of 500 nuclei activity measurements. We performed the inference on each dataset individually
and reported the mixture of posterior distribution over the 10 datasets to take into account the finite size variability in the generated
data. We conclude that the inference framework performs well, since all the inferred quantities cover the true values within error bars.
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In addition, we estimated globally for all synthetic data the fractional inference error |fint — firue | /irue from the MCMC sampled
parameters 6;s. For all inferred parameters, the median of the error never exceeds 20% (S6F). Overall, the inference allows us to
distinguish the different tested modulation strategies without ambiguities. In addition, the sampled joint posterior distributions
P(kini, kon, kof|Data) are clearly peaked in the parameter space (Figure S5C), indicating that practical identifiability is not an issue
with real data.

Effect of elongation rate on inference

As discussed above, the elongation rate k¢, sets the temporal scale of the transcriptional parameters, thus a different elongation rate
would lead to different values of the parameters. In the manuscript, we used a value of kg0 =1.5 kb/min which we previously
measured (Garcia et al., 2013). A recent study suggests that this value might be overall larger in the blastoderm embryo, of the order
of 2.5 kb/min (Fukaya et al., 2017). We thus sought to determine to which extent this new value would affect our results.

In principle, a different value of k¢, rescales the transcriptional parameters in a very predictable way. No matter the elongation rate,
the three quantities kini, (n) and 7, should be perfectly identifiable. It follows that the new parameters (denoted by the * superscript)
have to satisfy the following equations:
ini% = Kini

ki

T kelo _
n s
kelo

*
n

T

Inferring the transcriptional parameters from the data with ke, = 2.5 kb/min instead of ke, = 1.5 kb/min (as in the main text) confirms
the rescaling above (Figures S6L-S6N). As predicted, kini and ki, are rescaled by a factor 2.5/1.5=1.67 and 1.5/2.5=0.6 respec-
tively, whereas (n) is conserved.

QUANTIFICATION AND STATISTICAL ANALYSIS

We imaged hunchback wild-type (labeled hb wt) in N = 18 embryos; a hunchback deficiency fly line with half the hb dosage (hb def)
N =7; Krdppel (Kr) N = 11; knirps during early (kni early) N = 14 and late nc13 (kni late) N = 16; giant females with two alleles (gt female)
N = 20 and giant males with one allele (gt male) N = 16. On average the number of quantified nuclei per AP bin (2.5% egg length) is
n =499 (hb wt), n = 157 (hb def), n =270 (Kr), n = 354 (kni early), n = 302 (kni late), n = 397 (gt female anterior region), n = 387 (gt female
posterior region), n = 310 (gt male anterior region) and n = 277 (gt male posterior region). The confidence intervals for all point esti-
mators of the data (mean, variance, noise, third cumulant and fourth cumulant; Figures 1, 2, and 3) were built by bootstrapping the
empirical distribution of activity in each individual embryo. We used the 68% confidence intervals for the point estimators. All the error
bars for the inferred parameters (Figure 5) correspond to the 10" to 90" percentiles of the marginal posterior distributions.
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Figure S1. Temporal Staging, Measurement Error, and Embryo-to-Embryo Variability, Related to Figures 1 and 2

(A) Cytoplasmic mRNA density as a function of developmental stage during the 13" interphase as estimated from DAPI staining by eye-inspection. Each data
point corresponds to a single embryo; cytoplasmic density was measured for each gene in the maximally expressed spatial region along the AP axis. Good
correlation between manual ranking and the cytoplasmic mMRNA accumulation correlation justifies the latter as a convenient proxy for time, and thus the
developmental age of the embryos within nuclear cycle 13.

(B) Mean activity in the maximally expressed regions as a function of the cytoplasmic mMRNA density. Each data point corresponds to a single embryo. Color code
as in Figure 1C.

(C) Pearson correlation coefficient p between the mean activity and the cytoplasmic mRNA density calculated over the population of embryos in (B). Values
indicate that up to 44% (p?) of the variance in mean activity across embryos can be explained by staging uncertainty. The large correlation for kni (dark green) led
to splitting the population of kni stained embryos into early and late stages to minimize the staging uncertainty in each subpopulation. We performed the splitting
by finding the cytoplasmic density threshold that minimizes the sum of within-population variance in mean activity.

(D) Staging variability osta in percent of the total mean activity u for each gene in the respective maximally expressed regions. The staging variability corresponds
to the variability in mean activity among embryos, which is explained by staging uncertainty between early and late embryo as estimated from cytoplasmic mRNA
density. The staging variability o, is defined as osta = poy,, where o, is the standard deviation of the mean activity across embryos. Note that the splitting of kni
stained embryos into early and late stages was justified as the staging variability is significantly reduced. The overall small staging variability, which never exceeds
14%, indicates that the mean activity is sufficiently stable in time to warrant a steady state assumption.

(legend continued on next page)



(E) Modeled imaging noise (CV) as a function of the mean activity for both channels. The imaging noise model was built from dual-color smFISH data using an
alternating probe configuration (see Figure 2A). Imaging error simg Was determined from the spread along the regression line between both channels (STAR
Methods). Errors were assumed normally distributed, independent, and of equal magnitude in both channels. Thus, the modeled imaging error ging is char-

acterized as the orthogonal spread along the fitted regression line, which was parameterized as gimg(v) = /02 + b1V +bzv2, where (ag, b+, by) are fit parameters,
and v is the scalar projection of each data point onto the regression line. After fitting, the modeled imaging noise (CV) is given by aimg (V) /u With v =/ u? + (au)2 for

the green channel (green line) and v =/ u2 + (;;/a)Q for the red channel (red line), where a is the slope of the fitted line and u is the mean activity.

(F) Variability of the mean across embryos (CV?) as a function of alignment noise. Each data point corresponds to a single AP bin (2.5% egg length). The diagonal
dashed line (slope = 1) highlights the correlation between the two quantities at the boundaries while the horizontal dash line corresponds to the embryo variability
in the maximally expressed regions for each gene (Figure 2E). The correlation indicates that most variability across embryos in the transition regions can be
explained by alignment noise, whereas the remaining variability in the maximally expressed regions reflects staging variability (C and D) and other extrinsic noise
sources.

(G) Fraction of the total variance o2 corresponding to the measurement variance as a function of the AP position. Measurement variability afnea is defined as the
combination of imaging 62, and alignment variability s5; . The solid and dashed vertical lines are the overall mean fraction across genes and the 68% confidence
interval, respectively.

(H) Fraction of the total variance o2 corresponding to the non-nuclear variance as a function of the AP position. The non-nuclear variance is the sum of the imaging
24> the alignment o2, and embryo variability 2. The remaining variance ¢2,, = 02 — 02, — 0%, — 02, is defined as the nuclear variance and is deemed intrinsic
to transcription. Overall, the nuclear variance largely predominates as it represents 84 % of the total variance, on average. The solid and dashed vertical lines are
the overall mean fraction across genes and the 68% confidence interval. Color code as in Figure 1C.

All error bars are the 68% confidence intervals.
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Figure S2. Mean-Cumulant Activity Relationships for a Single Gene Copy, Related to Figure 3

(A-D) The mean and the cumulants were corrected for different gene length, probe configuration and copy number. Each data point corresponds to a single AP
bin and the error bars are the 68% confidence intervals. The dashed line stands for the Poisson background. Color code as in Figure 1C.

(A) Estimation of the maximal activity go by fitting a 2" order polynomial of the mean activity to the variance. The maximal activity go is determined as the second
intercept of the fit with the Poisson background (vertical dashed line). In Figures 3B-3D and S2B-D the mean and the cumulants are normalized by the respective
powers of go. Notably, (g)/go = (n) for constant kin;.

(B-D) Normalized cumulants as a function of normalized mean activity. The solid lines are 2" (B), 3"%(C) and 4™ (D) order polynomial fits, respectively. Fits were
performed for each gene independently (colored lines); black line corresponds to the global fit of all genes (Figures 3B-3D). Individual fits are qualitatively similar,
suggesting global trends in the data.

(E) Steady state two-state model cumulants as a function of the mean occupancy (g)/go = (n) for different scenarios of single parameter modulation (modulation
of (n) through either ko, or ko alone, or modulation of (n) at fixed correlation time 7, by changing both ko, and kos; Figures 3G-3l). For each considered
modulation, only a single parameter is free since the value of go (determined from A) has been fixed and the initiation rate ki,; is assumed constant. Varying the free
parameters (graded colored lines) mainly affects the amplitude of the cumulants. The solid black lines stand for the common maximal amplitude limit attained
when the correlation time goes to infinity.
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Figure S3. Time-Dependent Cumulant Analysis, Related to Figure 3
All time dependent-solutions of the two-state model were calculated with initial conditions g(t =0) = 0 (no Pol Il on the gene) and n(t=0) =0 (gene initially in the
‘off’ state).
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(A) Time-dependent mean activity (g(t)) normalized by its steady state value g(t — « ) =g at three different times (t = 2.5 min, t =5 min and t = 7.5 min) as a function
of the switching correlation time 7,,. At steady state, the ratio is thus equal to one (horizontal dashed line). The correlation time is the only parameter that affects the
relaxation to steady state. As 7, increases, the relaxation becomes slower. For t=7.5 min, a correlation time no larger than 3 min is required to reach approx-
imately 90% of the maximal activity as observed in the data (Figure 3B).

(B) Correlation time 7, as a function of the mean occupancy (n) for each best-fit single parameter modulation (from Figures 3G-3l). Modulation of k¢ alone
predicts a correlation time that is too large (7, >> 3 min) at high (n) to reach the maximal activity of the data at mid cycle (7.5 min).

(C) Time-dependent relative activity as a function of the mean occupancy (n) for each best-fit single parameter modulation (as in Figures 3G-3l). Same color code
as in (B). The relative activity was calculated as the mean activity (g(t)) att =7.5 min normalized by its steady state value (g). Modulation of k. alone clearly fails to
reach steady state in time at high (n), as it only reaches 40% of the maximal activity. On the other hand, both modulation of ko, alone and of (n) at fixed 7, reach a
sufficiently large maximal activity to explain the data (100% and 88%, respectively).

(D-F) Normalized time-dependent mean activity (g(t))/go as a function of time for each best-fit single parameter modulation (as in Figures 3G-3l). The circles
correspond to the maximal attainable activity ((n) = 1) aftert=2.5,5 and 7.5 min (vertical dashed lines). Each modulation predicts different dynamics for boundary
formation; for k,n modulation high (n) regions relax faster than low (n) regions (D), while it is the opposite for ko (E). For fixed 7, all regions relax in synchrony
independently of (n) (F). In the latter case, during interphase 13 the ratio of any two curves is constant in time, and thus these ratios are conserved across the
patterning boundaries, which are uniquely determined by (n).

(G) Normalized time-dependent cumulants as a function of the normalized time-dependent mean activity for each best-fit single parameter modulation. The solid
black lines correspond to the steady state best fits in Figures 3G-3I. The data in gray are identical to Figures 3B-3D and the error bars are given by the 68%
confidence intervals. For sufficiently large t (i.e., t> {7y, 7e}), the time-dependent mean and cumulant relationships closely follow the steady state ones. In
addition, at fixed elongation time 7., the set of steady state cumulants are uniquely determined by ki, (1) and 7,. Together, these two observations imply that
even when far from steady state, fitting the steady state cumulants would still provide good estimates of the parameters, except that the estimated (n) would
instead corresponds to the instantaneous mean occupancy (n(t)) =(g(t))/go (STAR Methods).
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Figure S4. Link between Signal Properties from Dual-Color smFISH and Probe Configuration for Each Gene, Related to Figure 4

(A) Mean 3’ versus 5’ activity for all gap genes. Each data point corresponds to the mean activity over all embryos in a single AP bin. The slopes for the different
genes depend on the exact probe configuration. Error bars are the 68% confidence intervals.

(B) 3’ versus 5’ noise (CV). The excellent correlation and the slope close to one suggest that the switching correlation time 7, is on the order of the elongation time
Te. Indeed, if 7, < 76, one would have expected more buffering of the switching noise on the 5’ end compared to the 3’ end, whereas if 7, > 7 the magnitude of the
noise should be similar on both ends. Error bars as in (A).

(C) Cumulative hb probe contribution to the fluorescence signal as a function of transcript length. The vertical dashed line corresponds to the length of a
cytoplasmic mRNA for hb (3635 bp). Transcripts whose length is larger than 2667 bp would contribute as 1 cytoplasmic unit in both channels.

(D) Activity ratio (mean 3’ signal over mean 5’ signal) as a function of gene length for hb (blue line). Assuming elongation to occur at constant speed and
instantaneous release of transcripts, the ratio is fully determined by the probes’ location and the gene length (transcribed region). The activity ratio results from the
ratio of the integrals of the cumulative probe contribution in (C).

(E) Activity ratio for each gene. The circles stand for the measured ratio with error bars (both standard errors and standard deviations are shown) obtained from the
propagation of the normalization errors in both channels for all embryos. The crosses correspond to the predicted ratio based on the annotated gene length. The
squares are derived from Pol2 occupancy data (Pol2-ChlP; Blythe and Wieschaus, 2015). For Kr, kni and gt, Pol2 signal is found a few hundreds bp away from
the annotated length suggesting extra processing related to termination. Similarly, the larger measured ratios (compared to the predicted ones based on
annotated gene length (crosses)) likely reflect retention of nascent transcripts at the loci due to termination.

(F) Effective gene length for each gene as determined from the activity ratio. Symbols and error bars as in (E). Assuming an elongation speed of 1.5 kb/min, the
difference between the effective and annotated gene length can be translated in time (inset). The lag or extra residence time of transcripts at the loci is at most 35
seconds.

(G) Temporal hierarchy used to calculate the 5" and 3’ joint distribution of transcriptional activities. The measured signal result from partially tagged nascent
transcripts and is proportional to the number of probe binding regions that have been transcribed. In order to calculate the joint distribution, we accumulate the
distinct contribution of nascent transcripts, between each probe region, from the 3’ end up to the 5’ end of the gene. At constant elongation rate, the distance
separating each successive probe region is converted into a time t,(c), where the superscript (C)e {(3), (5)} stands for the probe channel and the subscript i
denotes the interval separating probe i from probe i — 1 (from the 3’ end to 5’ end direction). The joint distribution of activity is obtained by subsequent convolution
of the distribution of Pol Il initiated during each time t,.(c). Each of these convolutions are properly weighted to take into account the proper contribution of each
probe region to the activity.
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Figure S5. Parameter Inference from Dual-Color smFISH Activity Distribution Using the Two-State Model, Related to Figure 4

(A and B) The data correspond to the measured distribution of 3’ versus 5 activity across AP position for hb. Data distributions were constructed based on the
2.5%-AP-bins defined in Figure 4C. Dashed black line represents the expected ratio of 3’ versus 5’ activity (r = 0.57 for hb); black circle corresponds to the mean
of the distribution and lies on the dashed line.

(A) Qualitative change of the distribution predicted by the 2-state model as the parameters vary for AP-bin at x /L = 38.6% (top row) and at x/L =48.9% (bottom
row). Changes in the transcriptional parameters Kini, kon, Koff, @and in (n) at fixed 7, set at the same mean activity (g) as in the data leads to qualitatively different
distributions. Thus, all information regarding the kinetic parameters is contained in the distribution of 3’ versus 5’ activity, which enables inference of these rates.
(B) Side by side representation of the empirical (data, top row) and modeled (bottom row) distributions with best-fit parameters for different AP bins. The empirical
distributions are used as input in our inference framework enabling precise inference of the underlying transcriptional kinetics at each AP position. Of note, the
displayed modeled distributions are devoid of measurement noise and represent the theoretical output of the two-state model given the probe-set configuration
and the effective elongation time. Thus, the likelihood of the data is essentially the convolution of the activity distribution calculated from the two-state model with
the noise measurement distribution. Overall, the best-fit distributions reproduced the data well.

(C) Joint posterior distribution of the parameters given the data in (B) for each AP position. These distributions are generated as the output of our inference
framework, namely we sampled the posterior distributions calculated from the likelihood according to Bayes’ rule using a Markov chain Monte Carlo (MCMC)
algorithm. As the joint posterior distributions are highly peaked in the parameter space, it indicates that the parameters of the model are identifiable for all AP
positions. The optimal kinetic rates kinj, kon and kos, Which were used to generate the modeled distribution in (B), are estimated from these joint posteriors as the
median of the marginal posterior distributions.
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Figure S6. Validation of the Inference Framework for Dual-Color smFISH and Synthesis Rates, Related to Figures 4 and 5

(A-F) We simulated synthetic 3’ and 5’ nuclear activity data based on four gene copies (two alleles with two sister chromatids each) modeled by a two-state model
with measurement noise, using the probe configuration for hb. To test the performance of our inference, we generated four different datasets by modulating the
mean input activity (g) in the data through: 1) initiation rate ki, alone (cyan), 2) on-rate ko alone (green), 3) off-rate ko alone (blue) and the mean occupancy (n) at
constant switching correlation time 7, (red). The constant go corresponds to the maximal activity for each dataset, defined as go = max(kini)7e, Where the
maximum is taken over the dataset when kiy; varies (cyan) and 7, is the elongation time. Importantly, the inference of the kinetic parameters was performed for

(legend continued on next page)



each sub-dataset independently (individual circles; 500 nuclei), without assuming any continuity in the dataset. To take into account finite size sampling variation
in the data, we inferred parameters on 10 replicates for each synthetic dataset. Thus, the estimated posterior distributions are aggregated over all replicates.
(A-E) Inferred kinetic rates Kini (A), kon (B), and kot (C), mean occupancy (n) =kon/ (kon + Kott) (D) and switching correlation time 7, = 1/ (kon + Kot) (E) @s a function of
the mean input activity (g)/go. All quantities are estimated from the sampled joint posterior distribution of the kinetic rates. Colored circles stand for the inferred
parameters as a function of input activity, i.e., the median of the marginal posterior distribution. Error bars correspond to the 10" and 90" percentiles of the
posterior distribution. The colored dashed lines represent the input (true) parameters used to simulate the data.

(F) Global relative inference error |6int — fyue | /0wrue calculated for each parameter 6. These errors are estimated over all synthetic datasets and replicates and
correspond to the median with error bars given by the 68% confidence intervals. Notably, ki, and (n) are easier to infer than the switching rates kon and ko or the
correlation time 7,, which have more subtle effect on the shape of the activity distribution. Still, the inference is able to distinguish between small differences in
parameter modulation. Overall, the errors remain small, as the medians of the inference errors never exceed 20% of the true values.

(G—J) Four first cumulants of data (unnormalized, in cytoplasmic units) as a function of the ones predicted by the two state-model with best fitting parameters for
multiple gene copies (Ny = 2, 4). Each data point corresponds to a single AP-bin. Error bars are the 68% confidence intervals. Overall, the slopes close to one and
the large R? indicate that the model captures the first four cumulants of data well. Color code as in Figure 1C.

(K) Inferred mean synthesis rate ki (n) as a function of the mean occupancy (n) for all genes. Modulation of transcript mean synthesis rate across boundaries is
fully determined by the mean occupancy. Color code as in Figure 1C. All error bars correspond to the 10" and 90" percentiles of the posterior distribution.
(L-N) Comparison of the inferred transcriptional parameters ki, (n) and 7, assuming two different elongation speeds ke, (1.5 kb/min versus 2.5 kb/min). Both kip;
and 7, are rescaled while (n) remains the same. Thus, our results are unaffected by the exact value of keo; it only leads to a rescaling of the inferred parameters
that have time units. Color code and error bars as in (K).

(O) Comparison of the estimated mean synthesis rate for a single gene copy of endogenous hb (wt and deficient) and the synthetic hb P2 reporter live-imaged by
Garcia et al. (2013) during interphase 13. The reporter corresponds to a minimal version of the hb gene that is driven by the P2 promoter and the P2 (proximal)
enhancer alone. The mean synthesis rate of the P2 reporter was obtained by multiplying the estimated effective initiation rate and the fraction of active nuclei
divided by two (two sister chromatids per locus), as reported in Garcia et al. (2013). Excluding the posterior region (x/L > 0.45), where the reporter shows ectopic
expression, the estimated mean synthesis rates only differ by approximately 30 to 50%. This difference, in the case of the reporter, likely stems from both larger
live-imaging measurement and calibration errors, and potentially reflects different expression rates between the endogenous gene and the synthetic reporter.
Nevertheless, the reported synthesis rates estimated through different models and techniques are consistent. Error bars as in (K) except for the hb P2 reporter
which are standard errors over multiple embryos.



	Diverse Spatial Expression Patterns Emerge from Unified Kinetics of Transcriptional Bursting
	Introduction
	Results
	Precise Measurements of Transcriptional Activity
	Single-Parameter Distribution of Transcriptional Activity across All Expression Boundaries
	Two-State Model Identifies the Unique Control Parameter
	Transcriptional Bursting in Absolute Units

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resource Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Fly strains

	Method Details
	DNA oligonucleotides
	smFISH protocol
	Imaging
	Image analysis
	Calibration in absolute units
	Measurement error
	Embryo staging
	Imaging noise model
	Splitting of the total variance

	Single parameter distribution of transcriptional activity
	Noise-mean relationship in the FISH data
	Normalized cumulants for a single gene copy
	Conversion factor for Pol II counts

	Two-state model of transcriptional activity
	Master equation
	Summary statistics

	Cumulant analysis
	Noise-mean relationship and cumulants predicted by the two-state model
	Time-dependent cumulant analysis

	Inferring transcription kinetics of endogenous genes from dual color smFISH
	Dual color smFISH and effective gene length
	Distribution of nascent transcripts
	Joint distribution of 5′ and 3′ activity
	Likelihood and inference
	Parameter identifiability and performance
	Effect of elongation rate on inference


	Quantification and Statistical Analysis



