
INVESTIGATION

Positional Information, Positional Error, and
Readout Precision in Morphogenesis: A

Mathematical Framework
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ABSTRACT The concept of positional information is central to our understanding of how cells determine their location in a multi-
cellular structure and thereby their developmental fates. Nevertheless, positional information has neither been defined mathematically
nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene ex-
pression patterns and examine the features of expression patterns that affect positional information quantitatively. We connect
positional information with the concept of positional error and develop tools to directly measure information and error from
experimental data. We illustrate our framework for the case of gap gene expression patterns in the early Drosophila embryo and show
how information that is distributed among only four genes is sufficient to determine developmental fates with nearly single-cell
resolution. Our approach can be generalized to a variety of different model systems; procedures and examples are discussed in detail.

CENTRAL to the formation of multicellular organisms is
the ability of cells with identical genetic material to

acquire distinct cell fates according to their position in a de-
veloping tissue (Lawrence 1992; Kirschner and Gerhart
1997). While many mechanistic details remain unsolved,
there is a wide consensus that cells acquire knowledge about
their location by measuring local concentrations of various
form-generating molecules, called “morphogens” (Turing
1952; Wolpert 1969). In most cases, these morphogens di-
rectly or indirectly control the activity of other genes, often
coding for transcription factors, resulting in a regulatory
network whose successive layers produce refined spatial pat-
terns of gene expression (von Dassow et al. 2000; Tomancak
et al. 2007; Fakhouri et al. 2010; Jaeger 2011). The system-
atic variation in the concentrations of these morphogens with
position defines a chemical coordinate system, used by cells
to determine their location (Nüsslein-Volhard 1991; St.
Johnston and Nüsslein-Volhard 1992; Grossniklaus et al.
1994). Morphogens are thus said to contain “positional in-
formation,” which is processed by the genetic network, ulti-

mately giving rise to cell fate assignments that are very re-
producible across the embryos of the same species (Wolpert
2011).

The concept of positional information has been widely
used as a qualitative descriptor and has had an enormous
success in shaping our current understanding of spatial pat-
terning in developing organisms (Wolpert 1969; Tickle et al.
1975; French et al. 1976; Driever and Nüsslein-Volhard
1988a,b; Meinhardt 1988; Struhl et al. 1989; Reinitz et al.
1995; Schier and Talbot 2005; Ashe and Briscoe 2006; Jaeger
and Reinitz 2006; Bökel and Brand 2013; Witchley et al.
2013). Mathematically, however, positional information has
not been rigorously defined. Specific morphological features
during early development have been studied in great detail
and shown to occur reproducibly across wild-type embryos
(Gierer 1991; Gregor et al. 2007a; Gregor et al. 2007b; Okabe-
Oho et al. 2009; Dubuis et al. 2013a; Liu et al. 2013), while
perturbations to the morphogen system resulted in systematic
shifts of these same features (Driever and Nüsslein-Volhard
1988a,b; Struhl et al. 1989; Liu et al. 2013). This established
a causal—but not quantitative—link between the positional in-
formation encoded in the morphogens and the resulting body
plan.

In Drosophila, the body plan along the major axis of the
future adult fly is established by a hierarchical network of inter-
acting genes during the first 3 hr of embryonic development
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(Nüsslein-Volhard and Wieschaus 1980; Akam 1987; Ingham
1988; Spradling 1993; Papatsenko 2009). The hierarchy is
composed of three layers: long-range protein gradients that
span the entire long axis of the egg (Driever and Nüsslein-
Volhard, 1988a), gap genes expressed in broad bands (Jaeger
2011), and pair-rule genes that are expressed in a regular
seven-striped pattern (Lawrence and Johnston 1989). Posi-
tional information is provided to the system solely via the first
layer, which is established from maternally supplied and
highly localized messenger RNAs (mRNAs) that act as protein
sources for the maternal gradients (Nüsslein-Volhard 1991;
St. Johnston and Nüsslein-Volhard 1992; Ferrandon et al.
1994; Anderson 1998; Little et al. 2011). The network uses
these inputs to specify a blueprint for the segments of the
adult fly in the form of gene expression patterns that cir-
cumferentially span the embryo in the transverse direc-
tion to the anterior–posterior axis. These patterns define
distinct single-nucleus wide segments with nuclei expressing
the downstream genes in unique and distinguishable combi-
nations (Gergen et al. 1986; Gregor et al. 2007a; Dubuis et al.
2013a,b).

It is remarkable that such precision can be achieved in
such a short amount of time, using only a few handfuls of
genes. Gene expression is subject to intrinsic fluctuations,
which trace back to the randomness associated with regula-
tory interactions between molecules present at low absolute
copy numbers (van Kampen 2011; Tsimring 2014). Moreover,
there is random variability not only within, but also between,
embryos, for instance in the strength of the morphogen sources
(Bollenbach et al. 2008). These biophysical limitations—e.g.,
in the number of signaling molecules, the time available for
morphogen readout, and the reproducibility of initial and
environmental conditions—place severe constraints on the
ability of the developmental system to generate reproduc-
ible gene expression patterns (Gregor et al. 2007a; Tkačik
et al. 2008).

Given these constraints, how precisely can gene expression
levels encode information about position in the embryo? To
address this question rigorously, we need to be able to make
quantitative statements about the positional information of
spatial gene expression profiles without presupposing which
features of the profile (e.g., sharpness of the boundary, size of
the domains, position-dependent variability, etc.) encode the
information. Here we make the case that the relevant mea-
sure for positional information is the mutual information
I—a central information-theoretic quantity (Shannon 1948)—
between expression profiles of the gap genes and position
in the embryo. We show how positional information puts
mathematical limits on the ability with which cells in the
developing Drosophila embryo can infer their position along
the major axis by simultaneously reading the concentrations
of multiple gap gene proteins. This framework allows us (i) to
quantitatively determine how many truly distinct and mean-
ingful levels of gene expression are generated by the Drosoph-
ila gap gene system, (ii) to assess how many distinguishable
cell fates such a system can support, and (iii) to ask how

variability across embryos impedes the ability of the pattern-
ing system to transmit positional information.

This study builds on two previously published articles. In
Dubuis et al. (2013a), the general data acquisition and error
analysis frameworks were presented with a subset of the
data analyzed here (referred to as data set A below); here
we analyze roughly eight times as many samples, to assess
the experimental reproducibility of the results and perform
tests that would be impossible with the original small sam-
ple. In Dubuis et al. (2013b), data set A was used to estimate
positional information and positional error, as outlined in
greater detail here. The study aimed at understanding posi-
tional information in the Drosophila gap gene network, but
the treatment of the conceptual and data analysis frame-
works was very cursory. In the present methodological arti-
cle, we provide a full account of both frameworks and
include a number of previously unreported results, relating
to (i) the mathematical connection between positional error
and information, (ii) different estimators of information
from data, (iii) various data normalization techniques, (iv) com-
bining data from multiple experiments, and (v) the validity of
various approximation schemes. We report on these techniques
in detail and benchmark them on real data to prepare our
approach for a straightforward generalization to other devel-
opmental systems.

Results

Theoretical foundations

In this section we establish the information-theoretic frame-
work for positional information carried by spatial patterns of
gene expression. To develop an intuition, we start with
a one-dimensional toy example of a single gene, which will
be generalized later to a many-gene system. We present
scenarios where positional information is stored in different
qualitative features of gene expression patterns. To capture
that intuition mathematically, we give a precise definition of
positional information for one and for multiple genes.
Finally, we show how a quantitative formulation of posi-
tional information is related to “decoding,” i.e., the ability of
the nuclei to infer their position in the embryo.

Positional information in spatial gene expression profiles:
Let us consider the simplest possible example where the
expression of a single gene G(x) varies with position x along
the axis of a one-dimensional embryo. We choose units of
length such that x = 0 and x = 1 correspond to the anterior
and posterior poles of the embryo, respectively. Suppose we
are able to quantitatively measure the profile of such a gene
along the anterior–posterior axis inN embryos, labeled with
an index m ¼ 1; . . . ;N . Such measurements of the light in-
tensity profile of fluorescently labeled antibodies against
a particular gene product yield G(m)(x), where G is the quan-
titative readout in embryo m of the gene expression level.
From a collection of embryos—after suitable data processing
steps described later—we can then extract two statistics: the
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position-dependent “mean profile,” capturing the prototyp-
ical gene expression pattern, and the position-dependent
variance across embryos, which measures the degree of
embryo-to-embryo variability or the reproducibility of the mean
profile. We can transform the measurements G(x) into pro-
files g(x) with rescaled units, such that the mean profile gðxÞ
is normalized to 1 at the maximum and to 0 at the minimum
along x. After these steps, our description of the system consists
of the mean profile, gðxÞ; and the variance in the profile, sg

2ðxÞ:
How much can a nucleus learn about its position if it

expresses a gene at level g? We compare three idealized
cases, where we pick the shape of gðxÞ by hand and assume,
for the start, that the variance is constant, sg

2ðxÞ ¼ c: The
first case is illustrated in Figure 1A, where a step-like profile
in g splits the embryo into two domains of gene expression:
an anterior “on” domain, where gðxÞ ¼ 1 for x , x0, and an
“off” domain in the posterior, x . x0, where gðxÞ ¼ 0: This
arrangement has an extremely precise, indeed infinitely
sharp, boundary at x0; if we think that the sharpness of
the boundary is the biologically relevant feature in this sys-
tem, this arrangement would correspond to an ideal pattern-
ing gene. But how much information can nuclei extract from
such a profile? If x0 were 1/2, the boundary would repro-
ducibly split the embryo into two equal domains: based on
reading out the expression of g, the nucleus could decide
whether it is in the anterior or the posterior, a binary choice
that is equally likely prior to reading out g. As we will see,
the positional information needed (and provided by such
a sharp profile!) to make a clear two-way choice between
two a priori equally likely possibilities = 1 bit.

Can a profile of a different shape do better? Figure 1B
shows a somewhat more realistic sigmoidal shape that has
a steep, but not infinitely sharp, transition region. If the var-
iance is small enough, s2

g � 1; this profile can be more in-
formative about the position. Nuclei far at the anterior still
have g � 1 (full induction or the on state), while nuclei at the
posterior still have g � 0 (the off state). But the graded re-
sponse in the middle defines new expression levels in g that
are significantly different from both 0 and 1. A nucleus with
g � 0.5 will thus “know” that it is neither in the anterior nor
in the posterior. This system will therefore be able to provide
more positional information than the sharp boundary that is
limited by 1 bit. Clearly, this conclusion is valid only insofar as
the variance s2

g is low enough; if it gets too big, the interme-
diate levels of expression in the transition region can no lon-
ger be distinguished and we are back to the 1-bit case.

In contrast to the infinitely sharp gradient, a linear gra-
dient, as depicted in Figure 1C, has already been proposed as
efficient in encoding positional information (Wolpert 1969).
By extending the argument for sigmoidal shapes above, if s2

g
is not a function of position, the linear gradient is in fact the
optimal choice. Consider starting at the anterior and moving
toward the posterior: as soon as we move far enough in x that
the change in gðxÞ is above sg, we have created one more
distinguishable level of expression in g and thus a group of
nuclei that, by measuring g, can differentiate themselves from

their anteriorly positioned neighbors. Finally, this reasoning
gives us a hint about how to generalize to the case where the
variance s2

g depends on position, x. What is important is to
count, as x covers the range from anterior to posterior, how
much gðxÞ changes in units of the local variability, sg(x)—it
will turn out that this is directly related to the mutual infor-
mation between g and position.

Thus a sharp and reproducible boundary can correspond
to a profile that does not encode a lot of positional infor-
mation, and a linear profile where the boundary is not even
well defined can encode a high amount of positional in-
formation. Ultimately, whether or not there are intermediate
distinguishable levels of gene expression depends on the
variability in the profile. Therefore, any measure of positional
information must be a function of both gðxÞ and s2

gðxÞ:
Does the ability of the nuclei to infer their position

automatically improve if they can simultaneously read out
the expression levels of more than one gene? Figure 2A shows
the case where two genes, g1 and g2, do not provide any more
information than each one of them provides separately, be-
cause they are completely redundant. Redundant does not
mean equal—indeed, in Figure 2A the profiles are different
at every x—but they are perfectly correlated (or dependent):
knowing the expression level of g1, one knows exactly the
level of g2, so g2 cannot provide any additional new information
about the position. In general, redundancy can help compen-
sate for detrimental effects of noise when noise is significant,
but this is not the case in the toy example at hand.

The situation is completely different if the two profiles
are shifted relative to each other by, say, 25% embryo length.
Note that none of the individual profile properties have
changed; however, the two genes now partition the embryo
into four different segments: the posteriormost domain that
is combinatorially encoded by the gene expression pattern
g1 ¼ g2 ¼ 0; the third domain with g1 ¼ 0;   g2 ¼ 1; the sec-
ond domain with g1 ¼ g2 ¼ 1; and the anteriormost domain

Figure 1 Positional information encoded by a single gene. Shown are
three hypothetical mean gene expression profiles gðxÞ as a function of
position x, with spatially constant variability sg (shaded area). (A) A step
function carries (at most) 1 bit of positional information, by perfectly
distinguishing between “off” (not induced, posterior) and “on” (fully
induced, anterior) states. (B) The boundary of the sigmoidal g(x) function
is now wider, but the total amount of encoded positional information can
be .1 bit because the transition region itself is distinguishable from the
on and off domains. (C) A linear gradient has no well-defined boundary,
but nevertheless provides a further increase in information—if sg is low
enough—by being equally sensitive to position at every x.
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with g1 ¼ 1;   g2 ¼ 0: Upon reading out g1 and g2, a nucleus,
a priori located in any of the four domains, can unambigu-
ously decide on a single one of the four possibilities. This is
equivalent to making two binary decisions and, as we will
later show, to 2 bits of positional information.

Finally, the most subtle case is depicted in Figure 2C.
Here, the mean profiles have exactly the same shapes as in
Figure 2B. What is different, however, is the correlation
structure of the fluctuations. In certain areas of the embryo
the two genes are strongly positively correlated, while in the
others they are strongly negatively correlated. If these areas
are overlaid appropriately on top of the domains defined
by the mean expression patterns, an additional increase in
positional information is possible. In the admittedly con-
trived but pedagogical example of Figure 2C, the mean pro-
files and the correlations together define eight distinguishable
domains of expression, combinatorially encoded by two genes.
Nuclei, having simultaneous access to the concentrations of the
two genes, can compute which of the eight domains they re-
side in, although it might not be easy to implement such a com-
putation in molecular hardware. Picking one of eight choices
corresponds to making three binary decisions, and thus to 3
bits of positional information. Note that in this case, each gene
considered in isolation still carries 1 bit as before, so that the
system of two genes carries more information than the sum of
its parts—such a scheme is called synergistic encoding.

In sum, we have shown that the mean shapes of the
profiles, as well as their variances and correlations, can carry
positional information. Extrapolating to three or more genes,
we see that the number of pairwise correlations increases and
in addition higher-order correlation terms start appearing. For-
mally, positional information could be encoded in all of these
features, but would become progressively harder to extract
using plausible biological mechanisms. Nevertheless, a princi-
pled and assumption-free measure should combine all statisti-
cal structure into a single number, a scalar quantity measured

in bits, that can “count” the number of distinguishable expres-
sion states (and thus positions), as illustrated in the examples
above.

Defining positional information: Determining the number
of “distinguishable states” of gene expression is more com-
plicated in real data sets than in our toy models: the mean
profiles have complex shapes and their (co)variability
depends on position. In the ideal case we can measure joint
expression patterns of N genes {gi}, i = 1, . . . ,N (for exam-
ple N = 4 for four gap genes in Drosophila) in a large set of
embryos. In such a scenario the position dependence of the
expression levels can be fully described with a conditional
probability distribution P({gi}|x). Concretely, for every po-
sition x in the embryo we construct an N-dimensional histo-
gram of expression levels across all recorded embryos,
which (when normalized) yields the desired P({gi}|x). This
distribution contains all the information about how expres-
sion levels vary across embryos in a position-dependent
fashion. For instance,

giðxÞ ¼
Z

dNg  giP
�fglgjx�; (1)

s2
i ðxÞ ¼

Z
dNgðgi2giðxÞÞ2PðfglgjxÞ; (2)

CijðxÞ ¼
Z

dNg
�
gigj2 giðxÞgjðxÞ

�
PðfglgjxÞ (3)

are the mean profile of gene gi, the variance across embryos of
gene gi, and the covariance between genes gi and gj, respec-
tively. In principle, the conditional distribution contains also all
higher-order moments that we can extract by integrating over
appropriate sets of variables. Realistically, we are often limited
in our ability to collect enough samples to construct P({gi}|x)
by histogram counts, especially when considering several

Figure 2 (A–C) Positional information encoded by two
genes. Spatial gene expression profiles are shown at the
top; an enumeration of all distinguishable combinations of
gene expression (roman numerals) across the embryo is
shown at the bottom. (A) Step function profiles of g1, g2
each encode 1 bit of information, but are perfectly redun-
dant, jointly encoding only two distinguishable states and
thus 1 bit of positional information, the same as each gene
alone. (B) The mean profiles of g1, g2 have been displaced,
removing the redundancy and bringing the total informa-
tion to 2 bits (four distinct states of joint gene expression).
(C) If in addition to the mean profile shape the down-
stream layer can read out the (correlated) fluctuations of
g1, g2, a further increase in information is possible. In this
toy example, fluctuations are correlated (+) and anticorre-
lated (2) in various spatially separated regions, which
allows the embryo to use this information along with
the mean profile shape to distinguish eight distinct
regions, bringing the total encoded information to 3 bits.

42 G. Tkačik et al.



genes simultaneously; the number of samples needed grows
exponentially with the number of genes. However, estimating
the mean profiles on the left-hand sides of Equations 1–3 can
often be achieved from data directly. A reasonable first step
(but one that has to be independently verified) is to assume
that the joint distribution P({gi}|x) of N expression levels {gi}
at a given position x is Gaussian, which can be constructed
using the measured mean values and covariances:

P ðfgigjxÞ
¼ ð2pÞ2N=2jCðxÞj21=2

3 exp

2421
2

XN
i; j¼1

ðgi 2 giðxÞÞ
�
C21ðxÞ�ij�gj2 gjðxÞ

�35:
(4)

We emphasize that the Gaussian approximation is not re-
quired to theoretically define positional information, but it
will turn out to be practical when working with experimen-
tal data; in the cases of one or two genes it is often possible
to proceed without making this approximation, which pro-
vides a convenient check for its validity.

While the conditional distribution, P({gi}|x), captures
the behavior of gene expression levels at a given x, establish-
ing how much information, in total, the expression levels
carry about position requires us to know also how frequently
each combination of gene expression levels, {gi}, is used
across all positions. Recall, for instance, that our arguments
related to the information encoded in patterns in Figure 2
rested on counting how often a pair of genes will be found in
expression states 00, 01, 10, and 11 across all x. This global
structure is encoded in the total distribution of expression
levels, which can be obtained by averaging the conditional
distribution over all positions,

PgðfgigÞ ¼
D
P
�fgigjx�E

x
¼

Z 1

0
dx   PðfgigjxÞ; (5)

where h�ix denotes averaging over x. Note that we can think
of Equation 5 as a special case of averaging with a position-
dependent weight,

PgðfgigÞ ¼
Z

dx   PxðxÞPðfgigjxÞ; (6)

where Px(x) is chosen to be uniform. As we shall see, in the
case of Drosophila anterior–posterior (AP) patterning, Px(x)
will be the distribution of possible nuclear locations along
the AP axis, which indeed is very close to uniform.

When formulated in the language of probabilities, the
relationship between the position x and the gene expression
levels can be seen as a statistical dependency. If we knew
this dependency were linear, we could measure it using, e.g.,
a linear correlation analysis between x and {gi}. Shannon
(1948) has shown that there is an alternative measure of
total statistical dependence (not just of its linear component),

called the mutual information, which is a functional of the
probability distributions Px(x) and P({gi}|x), and is defined by

Iðx/fgigÞ

¼
R
dx   PxðxÞ

R
dNg  PðfgigjxÞlog2

PðfgigjxÞ
PgðfgigÞ :

(7)

This positive quantity, measured in bits, tells us how much
one can know about the gene expression pattern if one
knows the position, x. It is not hard to convince oneself that
the mutual information is symmetric; i.e., I({gi} / x) = I
(x / {gi}) = I({gi}; x). This is very attractive: we do the
experiments by sampling the distribution of expression lev-
els given position, while the nuclei in a developing embryo
implicitly solve the inverse problem—knowing a set of gene
expression levels, they need to infer their position. A funda-
mental result of information theory states that both prob-
lems are quantified by the same symmetric quantity, the
information I({gi}; x). Furthermore, mutual information is
not just one out of many possible ways of quantifying the
total statistical dependency, but rather the unique way that
satisfies a number of basic requirements, for example that
information from independent sources is additive (Shannon
1948; Cover and Thomas 1991).

The definition of mutual information in Equation 7 can be
rewritten as a difference of two entropies,

Iðfgig; xÞ ¼ S
�
PgðfgigÞ

�
2

D
S½PðfgigjxÞ�

E
x
; (8)

where S[p(x)] is the standard entropy of the distribution p(x)
measured in bits (hence log base 2):

S½ pðxÞ� ¼ 2

Z
dx   pðxÞlog2pðxÞ: (9)

Equation 8 provides an alternative interpretation of the
mutual information I({gi}; x), which is illustrated in Figure 3.
In the case of a single gene g, the “total entropy” S[Pg(g)],
represented on the left, measures the range of gene expres-
sion available across the whole embryo. This total entropy,
or dynamic range, can be written as the sum of two contri-
butions. One part is due to the systematic modulation of g
with position x, and this is the useful part (the “signal”) or
the mutual information I({gi}; x). The other contribution is
the variability in g that remains even at constant position x; this
represents pure “noise” that carries no information about posi-
tion and is formally measured by the average entropy of the
conditional distribution (the noise entropy), hS[P(g|x)]ix. Po-
sitional information carried by g is thus the difference between
the total and noise entropies, as expressed in Equation 8.

Mutual information is theoretically well founded and
is always nonnegative, being 0 if and only if there is no
statistical dependence of any kind between the position
and the gene expression level. Conversely, if there are I
bits of mutual information between the position and the
expression level, there are � 2Iðfgig;xÞ distinguishable gene

Positional Information and Error 43



expression patterns that can be generated by moving
along the AP axis, from the head at x = 0 to the tail at
x = 1. This is precisely the property we require from any
suitable measure of positional information. We therefore
suggest that, mathematically, positional information
should be defined as the mutual information between ex-
pression level and position, I({gi}; x).

Defining positional error: Thus far we have discussed
positional information in terms of the statistical dependency
and the number of distinguishable levels of gene expression
along the position coordinate. To present an alternative
interpretation, we start by using the symmetry property of
the mutual information and rewrite I({gi}; x) as

Iðfgig; xÞ ¼ S½Px ðxÞ�2
�
S½PðxjfgigÞ�

	
PgðfgigÞ; (10)

i.e., the difference between the (uniform) distribution over
all possible positions of a cell in the embryo and the distri-
bution of positions consistent with a given expression level.
Here, P(x|{gi}) can be obtained using Bayes’ rule from the
known quantities:

PðxjfgigÞ ¼ PðfgigjxÞPxðxÞ
PgðfgigÞ : (11)

The total entropy of all positions, S[Px(x)] in Equation 10, is
independent of the particular regulatory system—it simply

measures the prior uncertainty about the location of the cells in
the absence of knowing any gene expression level. If, however,
the cell has access to the expression levels of a particular set of
genes, this uncertainty is reduced, and it is hence possible to
localize the cell much more precisely; the reduction in uncer-
tainty is captured by the second term in Equation 10. This form
of positional information emphasizes the decoding view, that is,
that cells can infer their positions by simultaneously reading
out protein concentrations of various genes (Figure 3).

Positional information is a single number: it is a global
measure of the reproducibility in the patterning system. Is
there a local quantity that would tell us, position by position,
how well cells can read out their gene expression levels and
infer their location? Is positional information “distributed
equally” along the AP axis or is it very nonuniform, such
that cells in some regions of the embryo are much better
at reproducibly assuming their roles?

The optimal estimator of the true location x of a cell, once
we (or the cell) measure the gene expression levels fg*i g;
is the maximum a posteriori (MAP) estimate, x*ðfg*i gÞ ¼
argmax  Pðxjfg*i gÞ: In cases like ours, where the prior distri-
bution Px(x) is uniform, this equals the maximum-likelihood
(ML) estimate,

x*
�n

g*i
o�

¼ argmax  P
�n

g*i
o


x�; (12)

thus, for each expression level readout, this “decoding rule”
gives us the most likely position of the cell, x*. The inset in
Figure 3 illustrates the decoding in the case of one gene.

How well can this (optimal) rule perform? The expected
error of the estimated x* is given by s2

xðx*Þ ¼
�ðx2x*Þ2	;

where brackets denote averaging over Pðxjfg*i gÞ: This error
is a function of the gene expression levels; however, we can
also evaluate it for every x, since we know the mean gene
expression profiles, giðxÞ; for every x. Thus, we define a new
quantity, the positional error sx(x), which measures how
well cells at a true position x are able to estimate their position
based on the gene expression levels alone. This is the local
measure of positional information that we were aiming for.

Independently of how cells actually read out the concen-
trations mechanistically, it can be shown that sx(x) cannot
be lower than the limit set by the Cramer–Rao bound (Cover
and Thomas 1991),

sx
2ðxÞ$ 1

IðxÞ; (13)

where IðxÞ is the Fisher information given by

IðxÞ ¼ 2

�
@2 log PðfgigjxÞ

@x2

�
PðfgigjxÞ

: (14)

Despite its name, the Fisher information I is not an information-
theoretic quantity, and unlike the mutual information I, the
Fisher information depends on position. Is there a connection
between the positional error, sx(x), and the mutual infor-
mation I({gi}; x)? Below we sketch the derivation, following

Figure 3 The mathematics of positional information and positional error
for one gene. The mean profile of gene g (thick solid line) and its vari-
ability (shaded envelope) across embryos are shown. Nuclei are distrib-
uted uniformly along the AP axis; i.e., the prior distribution of nuclear
positions Px(x) is uniform (shown at the bottom). The total distribution of
expression levels across the embryo, Pg(g), is determined by averaging
P(g|x) over all positions and is shown on the left. The positional information
I(g; x) is related to these two distributions as in Equation 8. Inset shows
decoding (i.e., estimating) the position of a nucleus from a measured
expression level g*. Prior to the “measurement” all positions are equally
likely. After observing the value g*, the positions consistent with this
measured values are drawn from P(x|g*). The best estimate of the true
position, x*, is at the peak of this distribution, and the positional error,
sx(x), is the distribution’s width. Positional information I(g; x) can equally
be computed from Px(x) and P(x|g) by Equation 10.
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Brunel and Nadal (1998), demonstrating the link for the case
of one gene, g.

Let us assume that the Gaussian approximation of Equa-
tion 4 holds and that the distribution of the levels of a single
gene at a given position is

PðgjxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

gðxÞ
q exp

(
2
1
2
ðg2gðxÞÞ2
s2
gðxÞ

)
: (15)

We can use the Gaussian distribution to compute the Fisher
information in Equation 14. We find that

I ¼ g92ðxÞ
s2
gðxÞ

þ 2
s92gðxÞ
s2
gðxÞ

; (16)

where (�)9 denotes a derivative with respect to position, x.
Information about position is thus carried by the change in
mean profile with position, as well as the change in the var-
iability itself with position. If the noise is small, sg � g; then
typically it will be the case that



s9g

 � jg9j (a potentially
important issue arises when the profiles and their variability
are estimated from noisy sampled data; in this case one
needs to be careful about spurious contributions to Fisher
information due to noise-induced gradients of the profiles
and the variability). If we formally require



s9g

 � jg9j; we
can retain only the first term to obtain a bound on positional
error:

s2
xðxÞ$

1
IðxÞ �

�
dg
dx

�22

s2
gðxÞ: (17)

This result is intuitively straightforward: it is simply the
transformation of the variability in gene expression, s2

gðxÞ; into
an effective variance in the position estimate, s2

x ðxÞ; and the
two are related by slope of the input/output relation, gðxÞ:

A crucial next step is to think of x as determining gene
expressions gi probabilistically, and the x* as being a function
of these gene expression levels—that is, when computing x*
neither we nor the nuclei have access to the true position.
This forms a dependency chain, x / {gi} / x*. Since each
of these steps is probabilistic, it can only lose information,
such that by information-processing inequality (Cover and
Thomas 1991) we must have I({gi}; x) $ I(x*; x). The mu-
tual information between the true location and its estimate
is given by

Iðx*; xÞ ¼ S½Pxðx*Þ�2
D
S½Pðx*jxÞ�

E
PxðxÞ

: (18)

Under weak assumptions, the first term in our case is ap-
proximately the entropy of a uniform distribution. While we
do not know the full distribution P(x*|x) and thus cannot
compute its entropy directly, we know its variance, which is
just the square of the positional error, s2

xðxÞ: Regardless of
what the full distribution is, its entropy must be less or equal

to the entropy of the Gaussian distribution of the same var-
iance, which is S½Pðx*jxÞ� ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pes2

xðxÞ
p

bits. Putting ev-
erything together, we find that

Iðfgig; xÞ$ I ðx*; xÞ$
*
log2

PxðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pes2

xðxÞ
p +

x

: (19)

Therefore, positional information I({gi}; x) puts an upper
bound to the average ability of the cells to infer their loca-
tions, that is, to the smallness of the positional error sx(x).
In a straightforward generalization of a single-gene case, the
Fisher information for a multivariate Gaussian distribution,
written for compactness in matrix notation, yields

I ¼ g9TC21g9þ 1
2
Tr
h
C21C9C21C9

i
: (20)

Under the same assumptions we made for the case of a single
gene, we retain only the first term, so that the expression for
positional error, written out explicitly in the component
notation, reads

s2
x ðxÞ$

1
IðxÞ �

0@ XN
i;j¼1

dgi
dx

h
CðxÞ21

i
ij

dgj
dx

1A21

; (21)

where Cij is the covariance matrix of the profiles, as defined
in Equation 3. This extends the fundamental connection,
Equation 19, between the positional information and posi-
tional error, to the case of multiple genes. Importantly, all
quantities—the mean profiles and their covariance—in
Equation 21 can be obtained from experimental data, so
sx(x) is a quantity that can be estimated directly.

Interpretation in a spatially discrete (cellular) system: In
the setup presented above, gene expression levels carry
information about a continuous position variable, x. But in
a real biological system, there exists a minimal spatial scale—
the scale of individual nuclei (or cells)—below which the
concept of gene expression at a position is no longer well
defined. This is particularly the case in systems that interpret
molecular concentrations to make decisions that determine
cell fates: such interpretations have no meaning at the spa-
tial scale of a molecule, but only at cellular scales. How should
positional information be interpreted in such a context?

When noise is small enough and the distribution of
positions consistent with observed gene expression levels,
P(x|{gi}) of Equation 11 is nearly Gaussian, and Equations
19 and 21 become tight bounds. In this case we can apply
Equation 10 directly. In developmental systems, cells or
nuclei are often distributed in space such that the intercel-
lular (or internuclear) spacings are, to a good approxima-
tion, equal: at least in systems we are studying, there are
no significant local rarefactions or overabundances of cells
or nuclei. Mathematically, this amounts to assuming that
Px(x) = 1/L (where L is the linear spatial extent over which
the cells or nuclei are distributed). This assumption of
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uniformity is not crucial for any calculation in this article
and can be easily relaxed, but it makes the equations some-
what simpler to display and interpret. Using a uniform dis-
tribution for Px(x), the information is

Iðfgig; xÞ �
*
log2

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pes2

xðxÞ
p +

x

: (22)

Note that in the problem setup we have normalized the
spatial axis so that the length L= 1 in the formula above (or,
if we restrict the attention to some section of the embryo,
the fractional size of that section). For any real data set one
needs to verify that the approximations leading to this result
are warranted (see below). Assuming that, Equation 22 fur-
ther illustrates the connection between positional error and
positional information. Consider a one-dimensional row of
nuclei spaced by internuclear distance d along the AP axis,
as illustrated in Figure 4. To determine its position along the
AP axis, each nucleus has to generate an estimate x* of its
true position x by reading out gap gene expression levels. In
the simplest case, the errors of these estimates are indepen-
dent, normally distributed, with a mean of zero and a vari-
ance s2

x : Given these parameters, there is some probability
Perror that the positional estimate deviates by more than the
lattice spacing d, in which case the nucleus would be assigned
to the wrong position, and perfectly unique, nucleus-by-
nucleus identifiability would be impossible. Figure 4 shows
how the positional information of Equation 22 and the proba-
bility of fate misassignment, Perror, vary as functions of sx.
Importantly, even when sx , d, that is, the positional error
is smaller than the internuclear spacing (as in Figure 4A), there
is still some probability of nuclear misidentification and there-
fore the positional information has not yet saturated. Only
when the positional error is sufficiently small that the proba-
bility weight in the tails of the Gaussian distribution is negligi-
ble (at sx � d), can each of the Nn nuclei be perfectly
identified and the information saturates at log2(Nn) bits.

In sum, we have shown that a rigorous mathematical
framework of positional information can quantify the repro-
ducibility of gene expression profiles in a global manner. By

framing the cells’ problem of finding their location in the
embryo in terms of an estimation problem, we have shown
that the same mathematical framework of positional infor-
mation places precise constraints on how well the cells can
infer their positions by reading out a set of genes. These
constraints are universal: regardless of how complex the
mechanistic details of the cells’ readout of the gene concen-
tration levels are, the expression level variability prevents
the cells from decreasing the positional error below sx. The
concept of positional error easily generalizes to the case of
multiple genes and is diagnostic about how positional infor-
mation is distributed along the AP axis.

Estimation methodology

There are a number of technical details that need to be
fulfilled when applying the formalisms of positional in-
formation and positional error to real data sets. Estimating
information theoretic quantities from finite data is generally
challenging (Paninski 2003; Slonim et al. 2005). In practice
it involves combining general theory and algorithms for in-
formation estimation with problem-specific approximations.
Here we present the information content of the four major
gap genes in early Drosophila embryos as a test case. First, we
briefly recapitulate our experimental and data-processing
methods (for details, see Dubuis et al. 2013a). Next, we
present the statistical techniques necessary to consistently
merge data from separate pairwise gap gene immunostain-
ing experiments into a single data set. Then we estimate
mutual information directly from data for one gene, using
different profile normalization and alignment methods. Fi-
nally, we introduce the Gaussian noise approximation and
an adaptive Monte Carlo integration scheme to extract the
information carried jointly by pairs of genes and by the full
set of four genes.

Extracting expression level profiles from imaging data:
Drosophila embryos were fixed and simultaneously immu-
nostained for the four major gap genes hunchback (hb),
Krüppel (Kr), knirps (kni), and giant (gt), using fluorescent
antibodies with minimal spectral overlap, as described in

Figure 4 Positional information, error, and perfect identi-
fiability. (A) Nuclei, separated by distance d, decode their
position from gap gene expression levels (top). The prob-
ability P(x*|x) for the estimated position x* is Gaussian
(solid black line for the central nucleus and dashed line
for the right next nucleus); its width is the positional
error sx. The probability Perror that the central nucleus is
assigned to the wrong lattice position is equal to the in-
tegral of the tails |x*| . d of the distribution P(x*|x) (red
area). (B) Positional information (blue) and probability of
false assignment (red) as a function of positional error sx.
Blue arrow indicates the value of positional error sx =
d used for the toy example in A; specifically we used
Nn = 59 nuclei uniformly tightly packing the central 80%
of the AP axis (L = 0.8 and thus d = L/Nn). In comparison,

the 1% positional error inferred from data in Dubuis et al. (2013b) corresponds to the green arrow. The information is computed using Equation 22
and made to saturate at Imax = log2(Nn) bits (perfect identifiability). All parameters are chosen to roughly match the results of the Drosophila gap
gene analysis.
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Dubuis et al. (2013a). We present an analysis of four data sets
(A, B, C, and D): data sets A–C have been processed simulta-
neously, but imaged in different sessions; data set D has been
processed and imaged independently from the other data sets.
Hence these datasets are well suited to assess the dependence
of our measurements and calculations on the experimental
processing. Dataset A has been presented and analyzed pre-
viously in Dubuis et al. (2013a,b) and Krotov et al. (2013).

Fluorescence intensities were measured using automated
laser scanning confocal microscopy, processing hundreds of
embryos in one imaging session. Cross-sectional images of
multicolor-labeled embryos were taken with an imaging
focus at the midsagittal plane, the center plane of the
embryo with the largest circumference. Intensity profiles of
individual embryos were extracted along the outer edge of
the embryos, using custom software routines (MATLAB;
MathWorks, Natick, MA) as described in Houchmandzadeh
et al. (2002) and Dubuis et al. (2013a). The results in the
following sections are presented using exclusively dorsal in-
tensity profiles, and we report their projection onto the AP
axis in units normalized by the total length L of the embryo,
yielding a fractional coordinate between 0 (anterior) and 1
(posterior). The dorsal edge was chosen for its smaller cur-
vature, which limits geometric distortions of the profiles
when projecting the intensity onto the AP axis. The AP axis
was uniformly divided into 1000 bins, and the average pro-
file intensity in each bin is reported. This procedure results
in a raw data matrix that lists, for each embryo and for each
of the four gap genes, one intensity value for each of the
1000 equally spaced spatial positions along the AP axis. Un-
less specified differently, all our results are reported for the
middle 80% of the AP axis (from x = 0.1 to x = 0.9), con-
sistent with Dubuis et al. (2013b); at the embryo poles geo-
metric distortion is large, and patterning mechanisms are
distinct from the middle.

For any successful information-theoretic analysis, the dom-
inant source of observed variability in the data set must be
due to the biological system and not due to the measure-
ment process, requiring tight control over systematic mea-
surement errors. Gap gene expression levels critically depend
on the developmental stage and on the imaging orientation
of the embryo. Therefore we applied strict selection criteria
on developmental timing and orientation angle (see Dubuis
et al. 2013a). In this article we restrict our analysis to a time
window of �10 min, 38–48 min into nuclear cycle 14. Dur-
ing this time interval the mean gap gene expression levels
peak and overall temporal changes are minimal. A careful
analysis of residual variabilities due to measurement error (i.
e., age determination, orientation, imaging, antibody nonspe-
cificity, spectral crosstalk, and focal plane determination)
reveals that the estimated fraction of observed variance in
the gap gene profiles due to systematic and experimental
error is ,20% of the total variance in the pool of profiles;
i.e., .80% of the variance is due to the true biological var-
iability (Dubuis et al. 2013a), satisfying the condition for the
information-theoretic analysis to yield true biological insight.

In most cases expression profiles need to be normalized
before they can be compared or aggregated across embryos.
Careful experimental design and imaging conditions can
make normalization steps essentially superfluous (Dubuis
et al. 2013a), but such control may not always be possible.
To deal with experimental artifacts, we introduce three pos-
sible types of normalizations, which we call Y alignment, X
alignment, and T alignment. In Y alignment, the recorded
intensity of immunostaining for each profile of a given gap
gene, G(m)(x) recorded from embryo m ðm ¼ 1; . . . ;NÞ; is
assumed to be linearly related to the (unknown) true con-
centration profile g(m)(x) by an additive constant am and an
overall scale factor bm (to account for the background and
staining efficiency variations from embryo to embryo, respec-
tively), so that G(m)(x) = am+bmg(m)(x). We wish to minimize
the total deviation x2 of the concentration profiles from the
mean across all embryos. The objective function is

x2Y

�n
am;bm

o�
¼

XN
m¼1

Z 1

0
dx

�
GðmÞðxÞ2

h
am þ bmgðxÞ

i�2
;

(23)

where gðxÞ ¼ N21P
mg

ðmÞðxÞ denotes an average concentra-
tion profile across all N embryos. The parameters {am, bm}
are chosen to minimize the x2

Y and thus maximize align-
ment, and since the cost function is quadratic, this optimi-
zation has a closed-form solution (Gregor et al. 2007a;
Dubuis et al. 2013a).

Additionally, one can perform the X alignment, where all
gap gene profiles from a given embryo can be translated
along the AP axis by the same amount; this introduces one
more parameter gi per embryo (not per expression profile),
which can be again determined using x2 minimization, sim-
ilar to the above. (In practice, one first carries out the trac-
table Y alignment, followed by a joint minimization of x2 for
a, b, g, which needs to be carried out numerically.) There
are two candidate sources of variability that can be compen-
sated for by X alignments: (i) our error in the exact deter-
mination of the AP axis, i.e., in the exact end points of the
embryo, due to image processing; and (ii) real biological
variability that would result in all the nuclei within the em-
bryo being rigidly displaced by a small amount along the
long axis of the embryo relative to the egg boundary.

Finally, the T alignment attempts to compensate for the
fraction of observed variability that is due to the systematic
change in gene profiles with embryo age even within the
chosen 10-min time bracket. We can use our knowledge of
how the mean profiles evolve with time and detrend the
entire data set in a given time window by this evolution of
the mean profile. We follow the procedure outlined in Dubuis
et al. (2013a) to carry out this alignment.

In sum, each of the three alignments, X, Y, and T, subtracts
from the total variance the components that are likely to have
an experimental origin and do not represent properly either
the intrinsic noise within an embryo or natural variability
between the embryos; since the total variance will be lower
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after alignment, successive alignment procedures should lead
to increases in positional information. Strictly speaking, the
lower bound on positional information would be obtained by
estimating it using raw data, without any alignment, thus
ascribing all variability in the recorded profiles to the true
biological variability in the system, but unless the control over
experimental variability is excellent, this lower bound might
be far below the true value. For instance, if embryos cannot
be stained and imaged in a single session, it would be
very hard to guarantee that there are no embryo-to-embryo
variabilities in the antibody staining and imaging background.
For that reason, we view the Y alignment as the minimal
procedure that should be performed unless staining and
imaging variability is shown to be negligible in dedicated
control experiments. The choice of performing alignments
beyond Y depends on system-specific knowledge about the
plausible sources of experimental vs. biological variability. For
these reasons, all the results in this article are based on
the minimal Y alignment procedure (unless explicitly specified
otherwise), thus yielding conservative information estimates,
but we also explore how these estimates would increase
for single genes and the quadruplet in the case of the other
alignments.

Once the desired alignment procedure has been carried
out, we can define the mean expression across the embryos,
giðxÞ for every gap gene i = 1, . . . , 4, and choose the units
for the profiles such that the minimum value of each mean
profile across the AP axis is 0, and the maximal value is 1.
This is the final, aligned and normalized, set of profiles on
which we carry out all subsequent analyses and from which
we compute the covariance matrix Cij(x) of Equation 3.

Applying the described selection criteria to the four
mentioned data sets yields embryo counts of N ¼ 24 (A),
N ¼ 32 (B), N ¼ 31 (C), and N ¼ 102 (D). Figure 5 shows

the mean profiles and their variability for two of the data sets,
using either the minimal (Y) or the full (XYT) alignment.

Estimating information with limited amounts of data:
Measuring positional information from a finite number N of
embryos is challenging due to estimation biases. Good esti-
mators are more complicated than the naive approach,
which consists of estimating the relevant distributions by
counting and using Equation 7 for mutual information directly.
Nevertheless, the naive approach can be used as a basis for an
unbiased information estimator, following the so-called direct
method (Strong et al. 1998; Slonim et al. 2005).

The easiest way to obtain a naive estimate for P({gi}, x) is
to convert the range of continuous values for gi and x into
discrete bins of size DN 3 D. On this discrete domain, we can
estimate the distribution ~PD;Mðfgig; xÞ empirically by creat-
ing a normalized histogram. To this end, we treat our data
matrix of (4 gap genes) 3 (N embryos) 3 (1000 spatial
bins) as containing M ¼ 10003N samples from the joint
distribution of interest. A naive estimate of the positional
information, IDIRD;Mðfgig; xÞ; is

IDIRD;Mðfgig; xÞ

¼ P
fgig;x

~PD;Mðfgig; xÞlog2
~PD;Mðfgig; xÞePxD;MðxÞ ePgD;MðfgigÞ;

(24)

where the subscripts indicate the explicit dependence on
sample sizeM and bin size D. It is known that naive estimators
suffer from estimation biases that scale as 1/M and DN+1.
Following Strong et al. (1998) and Slonim et al. (2005), we
can obtain a direct estimate of the mutual information by first
computing a series of naive estimates for a fixed value of D and
for fractions of the whole data set. Concretely, we pick fractions

Figure 5 Simultaneous measurements of gap gene ex-
pression levels and profile alignment. (A) The mean pro-
files (thick lines) of gap genes Hunchback, Giant, Knirps,
and Krüppel (color coded as indicated) and the profile
variability (shaded region = 61 SD envelope) across 24
embryos in data set A, normalized using the Y alignment
procedure. (B) The same profiles have been aligned using
the full (XYT) procedure. Shown is the region that corre-
sponds to the dashed rectangle in A to illustrate the sub-
stantially reduced variability across the profiles. (C and D)
Plots analogous to A and B showing the profiles and their
variability for data set D.

48 G. Tkačik et al.



m ¼ ½0:95  0:9  0:85  0:8  0:75  0:5�3N of the total number of
embryos, N : At each fraction, we randomly pick m embryos
100 times and compute hIDIRD;mðfgig; xÞi (where averages are
taken across 100 random embryo subsets). This gives us a se-
ries of data points that can be extrapolated to an infinite data
limit by linearly regressing hIDIRD;mðfgig; xÞi vs. 1/m (Figure 6A).
The intercept of this linear model yields IDIRD;m/Nðfgig; xÞ, and
we can repeat this procedure for a set of ever smaller bin sizes
D. To extrapolate the result to very small bin sizes, D / 0, we
use the previously computed IDIRD;N; ðfgig; xÞ for various choices
of decreasing D, and extrapolate to D / 0 as shown in Figure
6B. At the end of this procedure we obtain the final estimate
IDIRD/0;n/Nðfgig; xÞ; called direct estimate (DIR) of positional
information (red square in Figure 6B). While no prior knowl-
edge about the shape of the distribution P({gi}, x) is assumed
by the direct estimation method, a potential disadvantage is
the amount of data required, which grows exponentially in the
number of gap genes. In practice, our current data sets suffice
for the direct estimation of positional information carried si-
multaneously by one or at most two gap genes.

To extend this method tractably to more than two genes,
one needs to resort to approximations for P({gi}|x), the
simplest of which is the so-called Gaussian approximation,
shown in Equation 4. In this case, we can write down the
entropy of P({gi}|x) analytically. For a single gene we get

S
�
~PD;MðgjxÞ

� ¼ 1
2
log2

�
2pes2

gðxÞ
�
þ logD; (25)

while the straightforward generalization to the case of N
genes is given by

S
�
~PD;MðfgigjxÞ

� ¼ 1
2
log2

�
ð2peÞN

CðxÞ

�þ NlogD; (26)

where |C(x)| is the determinant of the covariance matrix
Cij(x). From Equation 8 we know that I(g; x) = S[P(g)] 2
hS[P(g|x)]ix. Here the second term (“noise entropy”)
is therefore easily computable from Equation 25, for a
discretized version of the distribution, ~P; using the (co)
variance estimate of gene expression levels alone. The first
term (total entropy) can be estimated as above by the
direct method, i.e., by making an empirical estimate of
~PD;MðgÞ for various sample sizes M and bin sizes D and ex-
trapolating M/N and D/ 0. This combined procedure,
where we evaluate one term in the Gaussian approxima-
tion and the other one directly, has two important proper-
ties. First, the total entropy is usually much better sampled
than the noise entropy, because it is based on the values of
g pooled together over every value of x; it can therefore be
estimated in a direct (assumption-free) way even when the
noise entropy cannot be. Second, by making the Gaussian
approximation for the second term, we are always overes-
timating the noise entropy and thus underestimating the
total positional information, because the Gaussian distribu-
tion is the maximum entropy distribution with a given

mean and variance. Therefore, in a scenario where the first
term in Equation 25 is estimated directly, while the second
term is computed analytically from the Gaussian ansatz, we
always obtain a lower bound on the true positional infor-
mation. We call this bound (which is tight if the conditional
distributions really are Gaussian) the first Gaussian approx-
imation (FGA).

For three or more gap genes the amount of data can be
insufficient to reliably apply either the direct estimate or FGA,
and one needs to resort to yet another approximation, called
the second Gaussian approximation (SGA). As in the FGA, for
the second Gaussian approximation we also assume that
PðfgigjxÞ � Gðfgig; giðxÞ;CijðxÞÞ is Gaussian, but we make an-
other assumption in that Pg({gi}), obtained by integrating over
these Gaussian conditional distributions, is a good approxima-
tion to the true Pg({gi}). The total distribution we use for the
estimation is therefore a Gaussian mixture:

PgðfgigÞ ¼
Z 1

0
dx   PðfgigjxÞ: (27)

For each position, the noise entropy in Equation 26 is pro-
portional to the logarithm of the determinant of the covariance
matrix, whose bias scales as 1/M if estimated from a limited
number M of samples. We therefore estimate the informa-
tion ISGAM ðfgig; xÞ for fractions of the whole data set and then
extrapolate for M/N.

Figure 7 compares the three methods for computing the
positional information carried by single gap genes in the
10–90% egg length segment. Across all four gap genes and all
four data sets the methods agree within the estimation error
bars. This provides implicit evidence that, at least on the
level of single genes, the Gaussian approximation holds suf-
ficiently well for our estimation methods.

Figure 6 Direct estimation for the positional information carried by
Hunchback. (A) Extrapolation in sample size for different bin sizes D,
starting with 10 bins for the bottom line and increasing to 50 bins for
the top line in increments of 2. Black points are averages of naive esti-
mates over 100 random choices of m embryos (error bars = SD), plotted
against 1/m on the x-axis. Lines and blue circles represent extrapolations
to the infinite data limit, m / N. (B) The extrapolations to the infinite
data limit (blue points from A) are plotted as a function of the bin size,
and the second regression is performed (blue line) to find the extrapola-
tion of D / 0. The final estimate, represented by the red square, is
IDIR(hb; x) = 2.26 6 0.04 bits; the error bar is the statistical uncertainty
in the extrapolated value due to limited sample size.
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Figure 8 compares the estimation results across data sets
and the alignment methods. With the exception of data set
D data under T alignments, the information estimates are
consistent across data sets. As expected, successive align-
ment procedures remove systematic variability and increase
the information by comparable amounts, so that the max-
imal differences (between the minimal Y alignment and the
maximal XYT alignment) are �25%, 21%, 21%, and 11%
for kni, Kr, gt, and hb, respectively, when averaged across
data sets.

Merging data from different experiments: To compute
positional information carried by multiple genes from our
data, using the second Gaussian approximation, we need
to measure N mean profiles, giðxÞ; and the N 3 N covari-
ance matrix, Cij(x). While measuring giðxÞ is a standard
technique, estimating the covariance matrix, Cij(x),
requires the simultaneous labeling of all N gap genes in
each embryo, using fluorescent probes of different colors.
While simultaneous immunostainings of two genes are
not unusual, it is not easy to scale the method up to more
genes while maintaining a quantitative readout. While for
data sets A–D we succeeded in doing a simultaneous four-
way stain, in general this is not always feasible, so we
developed an estimation technique for inferring a consis-
tent N 3 N covariance matrix based on multiple collec-
tions of pairwise stained embryos.

Estimating a joint covariance matrix from pairwise
staining experiments is nontrivial for two reasons. First,
each diagonal element of the covariance matrix, i.e., the
variance of an individual gap gene, is measured in multiple
experiments, but the obtained values might vary due to mea-
surement errors. Second, true covariance matrices are posi-
tive definite, i.e., det(C(x)) . 0, a property that is not
guaranteed by naively filling in different terms of the matrix
by computing them across sets of embryos collected in differ-

ent experiments. This is a consequence of small sampling
errors that can strongly influence the determinant of the ma-
trix. We therefore need a principled way to find a single best
and valid covariance matrix from multiple partial observa-
tions, a problem that has considerable history in statistics
and finance (see, e.g., Stein 1956; Newey and West 1986).

We start by considering a numberN ij of embryos that have
been costained for the pair of gap genes (i, j). Let the full data
set consist of all such pairwise stainings: for N gap genes, this is

a total of
�
N
2

�
pairwise experiments, where i, j = 1, . . . ,N

and i , j. Thus, in the case of the four major gap genes in
Drosophila embryos, kni, Kr, gt, and hb, the total number of
recorded embryos isN ¼ P

ði;jÞN ij; where the sum is across all
six pairwise measurements: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4),
(3, 4). These pairwise measurements give us estimates of the
mean profile ĝiðxÞ and the 2 3 2 covariance matrices for each
pair (i, j), ĈijðxÞ:

For four gap genes and six pairwise experiments, we will
get six 2 3 2 partial covariance matrices Ĉ; and 6 3 2
estimates of the mean profile ĝ: Our task is to find a single
set of four mean profiles giðxÞ and a single 4 3 4 covariance
matrix Cij(x) that fits all pairwise experiments best. In the
next paragraphs, we show how this can be computed for the
arbitrary case of N gap genes.

To infer a single set of mean profiles giðxÞ and a single
consistent N3 N covariance matrix Cij(x), we use maximum-
likelihood inference. We assume that at each position x our
data are generated by a single N-dimensional Gaussian dis-
tribution of Equation 4 with unknown mean values and an
unknown covariance matrix, which we wish to find, but we
can observe only two of the mean values and a partial co-
variance in each experiment; the other variables are inte-
grated over in the likelihood.

Following this reasoning, the log likelihood of the data
for pairwise staining (i, j) at position x is

Figure 7 Comparing estimation methods for positional
information carried by single gap genes. Shown are the
estimates for four gap genes (color coded as in Figure 5),
using four data sets (data sets A, B, C, and D) and four
different alignment methods (Y, YT, XY, and XYT), for 64
total points per plot. Dashed line shows equality. Different
alignment methods result in a spread of information val-
ues for the same gap gene, as shown explicitly in Figure 8.
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where the log-likelihood L as well as the mean profiles,
covariance elements, and the measurements all depend on x;
index m enumerates all theN ij embryos recorded in a pairwise
experiment (i, j).

Since all pairwise experiments are independent measure-
ments, the total likelihood LtotðxÞ at a given position x is the
sum of the individual likelihoods LtotðxÞ ¼

P
ði;jÞLijðxÞ: After

some algebraic manipulation, the total log likelihood can be
written in terms of the empirical estimates for the mean
profiles ĝi and covariances Ĉij of the separate pairwise
experiments:

LtotðxÞ ¼ 2
P
ði;jÞ

lnð2pÞ þ ln
�
CiiðxÞCjjðxÞ2C2

ijðxÞ
�

þ   CjjðxÞ
ĈijðxÞ2 2giðxÞĝiðxÞ þ g2i ðxÞ

CiiðxÞCjjðxÞ2C2
ijðxÞ

þ  CiiðxÞ
ĈjjðxÞ2 2gjðxÞĝjðxÞ þ g2j ðxÞ

CiiðxÞCjjðxÞ2C2
ijðxÞ

þ   2CijðxÞ

3
ĈijðxÞ2 ĝiðxÞgjðxÞ2 ĝjðxÞgiðxÞ þ giðxÞgjðxÞ

CiiðxÞCjjðxÞ2C2
ijðxÞ

:

For each position x, we search for giðxÞ and Cij(x) that maximize
LtotðxÞ: Before proceeding, however, we have to guarantee

that the search can take place only in the space of positive
semidefinite matrices Cij(x) (i.e., det C$ 0). We enforce this
constraint by spectrally decomposing Cij and parameterizing
it in its eigensystem (Pinheiro and Bates 2007). To this end,
we write C(x) = PDPT, where D is a diagonal matrix param-
eterized with the variables a1, . . . , aN that determine the
diagonal elements in D; i.e., Dii = exp(ai). The orthonormal
matrix P is decomposed as a product of the N(N 2 1)/2
rotation matrices in N dimensions: P ¼ QNðN21Þ=2

k¼1 RkðukÞ;
where Rk(uk) is a Euclidean rotation matrix for angle uk

acting in each pair of dimensions indexed by k.
In the spectral representation, the likelihood is a function

of N values gi; N parameters ai, and N(N2 1)/2 angles uk at
each x. In the case of four gap genes, this is a total of 14
parameters that need to be computed by maximizing LtotðxÞ
at each location x.

There is no guarantee that there is a unique minimum
for the log likelihood; moreover, there could exist sets of
covariance matrices that all lead to essentially the same
value for LtotðxÞ; or, even more dangerously, the maximum-
likelihood solution could favor matrices with vanishing
determinants, especially when estimating from a small num-
ber of samples. To address these issues, we regularize the
problem by replacing D / D + lI, where I is the identity
matrix and l is the regularization parameter. Larger values
of l will favor more “spherical” distributions, while small
values will allow distributions that can be very squeezed
in some directions. We thus maximize Ltotðx; lÞ to find the
best set of parameters given the value of the regularizer
(which is assumed to be the same for every x). To set l

we use cross-validation: the maximum-likelihood fit is per-
formed for various choices of l not over all available data
(embryos), but only over a training subset. The remaining
embryos constitute a test subset. Parameter fits for different
l obtained on the training data can be assessed and com-
pared by evaluating their likelihood over test data and
selecting the value of l that maximizes the model likelihood
over the testing set.

To compute giðxÞ and Cij(x), we initialize giðxÞ to the
mean profile across all pairwise experiments (i, j); we
initialize ai to the mean of the log of the diagonal terms
Ĉii; and we initialize all rotation angles uk = 0. The
Nelder–Mead simplex method is used to maximize LtotðxÞ
(Lagarias et al. 1998). Finally, we compute C(x) from ai

and uk.
Finally, we use our quadruple-stained data sets to test our

pairwise merging procedure. We partition the 102 embryos
from data set D into six disjoint subsets of 14 embryos each
(while retaining 18 embryos for validation), and in each
subset we consider only one of the six possible pairs of gap
gene data; that is, in every subset for a pair of genes (i, j),
we measured the mean expression profiles giðxÞ; gjðxÞ and
the 2 3 2 covariance matrix Cij(x), the inputs to the maximum-
likelihood merging procedure. Note that this benchmark
uses real data from data set D, by simply “blacking out”
certain measured values so that for every embryo, only

Figure 8 Consistency across data sets and a comparison of alignment
methods for positional information carried by single gap genes. Direct
estimates with estimation error bars are shown for four gap genes (color
coded as in Figure 5) in separate panels. On each panel, different align-
ment methods (Y, YT, XY, and XYT) are arranged on the horizontal axis,
and for every alignment method we report the estimation results using
data sets A, B, C, and D (successive plot symbols from left to right) and
their average (thick horizontal line).
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one pair of gap genes remains visible to the merging pro-
cedure. The inferred 4 3 4 covariance matrix can be com-
pared to the covariance matrix estimated from the complete
data set. The results of this procedure are shown in Figure 9,
demonstrating that pairwise measurements can be merged
into a consistent covariance matrix, whose determinant
matches well with the determinant extracted from the com-
plete data set. Note that determinants are compared because
they are very sensitive to the inferred parameters and enter
directly into the expressions for positional information and
positional error. Importantly, filling in the covariance matrix
naively, or skipping the regularization, results in either non-
positive-definite matrices or matrices whose determinants
are close to singular at multiple values of position x. The
presented maximum-likelihood merging procedure will al-
low our framework to be applied to model systems where
simultaneous gap gene measurements are hard to obtain,
but pairwise stains are feasible.

Monte Carlo integration of mutual information: An-
other technical challenge in applying the second Gaussian
approximation for positional information to three or more
gap genes lies in computing the entropy of the distribution
of expression levels, S[Pg({gi})]. This is a Gaussian mixture
obtained by integrating P({gi}|x) over all x as prescribed
by Equation 27. In one or two dimensions one can evaluate
this integral numerically in a straightforward fashion by
partitioning the integration domain into a grid with fine
spacing D in each dimension, evaluating the conditional
distribution P({gi}|x) on the grid for each x and averaging
the results over x to get Pg({g}), from which the entropy
can be computed using Equation 9. Unfortunately, for three
genes or more this is infeasible because of the curse of
dimensionality for any reasonably fine-grained partition.

To address this problem we make use of the fact that
over most of the integration domain Pg({gi}) is very small
if the variability over the embryos is small. This means
that most of the probability weight is concentrated in
the small volume around the path traced out in N-dimen-
sional space by the mean gene expression trajectory, giðxÞ;
as x changes from 0 to 1. We designed a method that
partitions the whole integration domain adaptively into
volume elements such that the total probability weight
in every box is approximately the same, ensuring fine

partition in regions where the probability weight is con-
centrated, while simultaneously using only a tractable
number of partitions.

The following algorithm was used to compute the total
entropy, S[Pg({gi})]:

1. The whole domain for {gi} is recursively divided into
boxes such that no box contains .1% of the total domain
volume.

2. For each box i with volume vi, we use Monte Carlo sam-
pling to randomly select t = 1, . . . , T points gt in the box
and approximate the weight of the box i as pðijxÞ ¼
viT21PT

t¼1PðgtjxÞ; we explore different choices for T in
Figure 11.

3. Analogously, we evaluate the approximate total weight of
each box p(i), by pooling Monte Carlo sampled points
across all x.

4. p(i|x) and p(i) are renormalized to ensure
P

ipðijxÞ ¼ 1
for every x and

P
ipðiÞ ¼ 1:

5. The conditional and total entropies are computed
as Snoise ¼ 2 hPipðijxÞlog2pðijxÞix and Stot ¼ 2

P
ipðiÞ

log2pðiÞ:
6. The positional information is estimated as I({gi}; x) =

Stot 2 Snoise.
7. The box i* = argmaxip(i) with the highest probability

weight p(i*) is split into two smaller boxes of equal vol-
ume v(i*)/2, and the estimation procedure is repeated
by returning to step 2. Additional Monte Carlo sampling
needs to be done only within the newly split box; for the
other boxes old samples can be reused.

8. The algorithm terminates when the positional informa-
tion achieves desired convergence or at a preset number
of box partitions.

Figure 10, A and B, shows how the algorithm works for
a pair of genes ({hb, Kr}) for which the joint probability
distribution is easy to visualize. To get the final SGA esti-
mate of positional information that the two genes jointly
carry about position, extrapolation to infinite data size is
performed in Figure 10D.

Figure 11 shows the MC estimate of the positional in-
formation carried by the quadruplet of gap genes and its
dependence on the parameter T (the number of MC sam-
ples per box per position) and the refinement of the adap-
tive partition. When T is too small (e.g., T = 100), we

Figure 9 Merging data sets using maximum-likelihood
reconstruction. Dataset D (102 embryos) is used to simu-
late six pairwise staining experiments with 14 unique em-
bryos per experiment. (A) The log likelihood of the merged
model on 18 test embryos (not used in model fitting), as
a function of regularization parameter l; l = 1024 is the
optimal choice for this synthetic data set. (B) The compar-
ison of the determinant of the 4 3 4 inferred covariance
matrix (red) as a function of position x, compared to the
determinant of the full data set (black solid line) or the
determinant of a subset of 14 embryos (black dashed
line), where small sample effects are noticeable.
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obtain a biased estimate of the information, presumably
because the evaluation of the distribution over boxes is
poor, leading to suboptimal recursive partitioning. When
T is increased to T $ 200, the estimates for different T
start converging as the number of adaptive boxes is in-
creased, and the final estimates (after extrapolation to an
infinitely fine partition) for different T agree to within
a few percent.

Application to the Drosophila gap gene system

Information in single gap genes and gap gene pairs:
Information carried by single genes is reported in Table 1.
The values are estimated using the direct method, which
agrees closely with the alternative estimation methods
(FGA and SGA; cf. Figure 7). Measured across four indepen-
dent experiments, the information values are consistent to
within the estimated error bars, indicating that not only
embryo-to-embryo experimental variability can be brought
under control as described in Dubuis et al. (2013a), but also
experiment-to-experiment variability is small.

Single genes carry substantially more than 1 bit of
positional information, sometimes even more than 2 bits,
thus clearly providing more information about position than
would be possible with binary domains of expression. How
is this information combined across genes? We can look at
the (fractional) redundancy of K genes coding for position
together,

R ¼
PK

i¼1Iðgi; xÞ2 Iðfgig; xÞ
Iðfgig; xÞ

; (29)

by comparing the sum of individual positional informations
to the information encoded jointly by pairs (K = 2) of gap
genes. Note that R= 1 for a totally redundant pair, R= 0 for
a pair that codes for the position independently, and R= 21
for a totally synergistic pair where individual genes carry
zero information about position.

At the level of pairs, information is always redundantly
encoded, R . 0, although redundancy is relatively small
(�20%), as shown in Figure 12. Such a low degree of re-
dundancy is expected because gap genes are often expressed
in complementary regions of the embryo in nontrivial com-
binations and will thus mostly convey new information
about position. Unlike in our toy examples in the Introduc-
tion, real gene expression levels are continuous and noisy,
and some degree of redundancy might be useful in mitigat-
ing the effects of noise, as has been shown for other biolog-
ical information processing systems (Tkačik et al. 2010).
Overall, with the addition of the second gene, positional
information increases well above the 0.5 bits that would
be expected theoretically for fully redundant gene profiles.
The increase is also larger than the theoretical maximum
for nonredundant (but noninteracting) genes, where the in-
crease for the second gap gene would be limited to 1 bit
(Tkačik et al., 2009). The ability to generate nonmonotonic
profiles of gene expression (e.g., bumps) is therefore crucial
for high information transmissions achieved in the Drosoph-
ila gap gene network (Walczak et al. 2010).

Information in the gap gene quadruplet: How much
information about position is carried by the four gap genes

Figure 10 Monte Carlo integration of information for
a pair of genes. (A) The (log) distribution of gene expres-
sion levels, Pg(hb, Kr), obtained by numerically averaging
the conditional Gaussian distributions for the pair over all x
(data set A). For two genes this explicit construction of Pg
is tractable and can be used to evaluate the total entropy,
S[Pg]. (B) As an alternative, one can use the Monte Carlo
procedure (with T = 100) outlined in the text, which uses
adaptive partitioning of the domain, shown here. The
boxes, here 104, are dense where the distribution contains
a lot of weight. (C) The comparison between MC evalu-
ated positional information carried by the hb/Kr pair and
the exact numerical calculation as in A, over different ran-
dom subsets of m = 16, . . . , 24 embryos, with 10 random
subsets at every m. The MC integration underestimates
the true value by 0.1% on average, with a relative scatter
of 43 1024. (D) To debias the estimate of the information
due to the finite sample size used to estimate the covari-
ance matrix, a SGA extrapolationm /N is performed on
the estimates from C, to yield a final estimate of I({hb, Kr};
x) = 3.44 6 0.02 bits.
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together, referred to as the gap gene quadruplet? Figure 13
shows the estimation of positional information, using MC
integration for all four data sets. The average positional in-
formation across four data sets is I = 4.3 6 0.07 bits, and
this value is highly consistent across the data sets. Notably,
the information content in the quadruplet displays a high
degree of redundancy: the sum of single-gene positional in-
formation values is substantially larger than the information
carried by the quadruplet, with the fractional redundancy of
Equation 29 being R = 0.84. Possible implications of such
a redundant representation are addressed in the Discussion.

To assess the importance of correlations in the expression
profiles and their contribution to the total information, we
start with the covariance matrices Cij(x) of data set A, which
we artificially diagonalize by setting the off-diagonal ele-
ments to zero at every x. This manipulation destroys the
correlations between the genes, making them conditionally
independent (mechanistically, off-diagonal elements in the
covariance matrix could arise as a signature in gene expres-
sion noise of the gap gene cross interactions). With these
matrices in hand we performed the information estimation,
using Monte Carlo integration, analogous to the analysis in
Figure 13. Surprisingly, we find a minimal increase in in-
formation from I = 4.2 6 0.03 bits to I = 4.4 6 0.02 bits
when the correlations are removed. This indicates that gap
gene cross interactions play a minor role in reshaping the
gene expression variability, at least insofar as that influences
the total positional information.

We also evaluated the importance of the alignment
procedure for estimating total information. Again we use
data set A to recompute the MC information estimates with
YT, XY, and XYT alignments and compare these with the Y
alignment procedure used in Figure 13. The positional infor-
mation encoded by the quadruplet is I = 4.36 0.03 (for YT),

I = 4.7 6 0.06 (for XY), and I = 4.8 6 0.06 (for XYT),
respectively. This shows that the temporal (T) alignment does
not change the information much, probably because our strin-
gent initial selection cutoff on the depth of the membrane
furrow canal has picked out the profiles that are sufficiently
localized in time around their stable shapes. In contrast, X
alignment emerges as important, generating an extra half bit
of positional information. This suggests that either our de-
termination of the AP axis used to assign a coordinate to
every gene expression has a random embryo-to-embryo error
(which is unlikely given the visual inspection of microscopy
images and extracted AP axes) or the gap gene expression
pattern is intrinsically variable in that it shifts rigidly from
embryo to embryo relative to the egg boundary. This would
imply that correlated readout errors that the nuclei might
make are less harmful than uncorrelated errors. If two neigh-
boring nuclei are positioned both toward the left or both to-
ward the right of the “true” pattern with some positional error
sx, this is very different from each of the nuclei randomly
perturbing its position with noise of magnitude sx: in the first
case, the rank order of the nuclear identities is preserved,
while in the second case it need not be, possibly leading to
a detrimental spatial mixing of the cell fates.

Decoding information and the resulting positional error:
Positional information is a single aggregate, or global, mea-
sure that quantifies the performance of the patterning system,
but we can also ask about such performance position by
position, using the positional error of Equation 21.

We start by looking at a single gene g, for which we
compute the positional error (for equally spaced positions
along the AP axis), using Equation 17. Figure 14 shows that
by reading out single gap genes (hb or Kr) the nuclei can
already achieve positional errors of ,1.5% egg length in
specific regions of the embryo, yet fail to do so in other
regions. Positional error is smaller in the regions of high
profile slope, where the variations in gene expression are
reliably translated into variations in position. Conversely,
the error formally diverges at the peaks and troughs of the
profiles where small variations in gene expression cannot
efficiently map to changes in position. Were the noise much
higher, this conclusion would not hold—in that regime one
could distinguish solely between, e.g., a domain of minimal
and a domain of maximal expression, and the positional
information would correspond better to the intuitive picture
of gap genes that define on and off domains.

Figure 11 Monte Carlo integration of mutual information for the gap
gene quadruplet. The estimation uses N ¼ 24 data set A embryos, with-
out correcting for the finite number of embryos (i.e., the empirical co-
variance matrix is taken to be the ground truth for this analysis). Shown
are the mean and 1-SD scatter over 10 independent MC estimations, for
each choice of T (number of samples per box). The information can then
be linearly regressed against the inverse number of boxes for last 2000
partitions and extrapolated to an infinitely fine partition; for each T, these
extrapolations are shown at right (crosses).

Table 1 Information (in bits) carried by single genes

Data set kni Kr gt hb

A 1.82 6 0.06 1.94 6 0.07 1.81 6 0.06 2.26 6 0.04
B 1.81 6 0.04 1.93 6 0.06 1.79 6 0.05 2.29 6 0.05
C 1.88 6 0.07 2.04 6 0.05 1.84 6 0.05 2.19 6 0.05
D 1.79 6 0.04 1.94 6 0.04 1.91 6 0.03 2.21 6 0.03
Mean 1.83 6 0.04 1.96 6 0.05 1.84 6 0.05 2.24 6 0.05

For each data set, we report the direct estimate of positional information. Error bars
are the estimation errors. The bottom row contains the (mean 6 SD) over data sets.

54 G. Tkačik et al.

http://flybase.org/reports/FBgn0001180.html
http://flybase.org/reports/FBgn0001325.html


An important advantage of using positional error is that it
can be naturally generalized to quantify the precision of local
position readout, using more than one morphogen gradient.
In Figure 14, E and F, we analyze the positional error given
the joint readout of the {hb, Kr} pair. The results show that
the optimal positional decoding performed with several genes
(e.g., N= 2) at a given x does not correspond to the positional
error carried by the most informative gene at that position;
the combined error can be smaller than the individual errors
due to the noise averaging by the N readouts, as well as due
to the correlation structure in the variability of the N profiles.

Finally, using the gap gene quadruplet simultaneously,
the positional error can reach an average value of � 1%,
while never exceeding a few percent, as shown for all four
data sets in Figure 15. This shows that the gap genes estab-
lish a convenient “chemical coordinate system,” in which it
is in principle possible to position any feature along the
entire length of the AP axis with roughly 1% precision; the
uniform coverage of the AP axis is a sign of efficient encod-
ing of positional information (Dubuis et al. 2013b). Note
that 1% positional error still does not correspond to perfect
nuclear identifiability, as shown in Figure 4: the error prob-
ability of switching the identities of two nearest neighbor
nuclei remains �16% (and the positional information is

�1.5 bits below that needed for perfect identifiability). This
precision might be sufficient for development, as suggested
by the matching precision of downstream markers (Dubuis
et al. 2013b). Alternatively, the positional errors of neigh-
boring nuclei are correlated, in which case the gap genes
could have sufficient information to uniquely determine the
order of nuclear identities (but not their absolute position),
despite 1% positional error. In either case, the consequences
of gene expression variability are truly small and we expect
that the approximation to the positional information using
positional error, given by Equation 22, could hold.

To systematically check whether the gene quadruplet
system really is within the small noise limit where expres-
sions of Equations 17, 21, and 22 should hold, we perform
the analysis summarized in Figure 16. We systematically
scale the measured gene variability in data set A up or down
by a factor q to generate synthetic data sets and compare the
positional information computed directly, using MC integra-
tion on these synthetic data with the approximation of Equa-
tion 22, computed using the positional error. Across the
range of q (extending from

ffiffiffiffiffiffiffi
0:4

p � 0:63 times the observed
noise to

ffiffiffi
5

p � 2:24 times the observed noise), the difference
between both estimates of positional information is,3%. For
small q, the information for the synthetic data (which is
Gaussian by construction) should be equal to the information
derived from positional error computed using the full expres-
sion for the Fisher information given by Equation 20. In fact,
Figure 16 shows that simple approximations to the Fisher
information leading to Equations 17 and 21 are sufficient
for a very good match. Even when the noise is increased for
q . 1, the approximation remains surprisingly good.

The agreement between the Monte Carlo estimate of
positional information and its approximation based on
positional error, observed in a controlled setting of Figure 16,
is reflected in the analogous comparison on the real data
highlighted in Figure 13. Here the Monte Carlo estimate is
by �0.1 bit larger than the estimate from positional error,
corresponding to a relative difference of �2.5%, and formally
still within the error bars of both estimates. Both analyses
suggest that the gap gene quadruplet truly is in the small

Figure 13 Positional information car-
ried by the quadruplet, {kni, Kr, gt, hb},
of gap genes. The four panels corre-
spond to the four data sets. Shown is
the extrapolation to the infinite data
limit (M / N) for SGA estimates using
Monte Carlo integration (black plot sym-
bols and dark red extrapolated value in
bits), as well as for estimation of posi-
tional information from positional error
(gray plot symbols and light red extrap-

olated value in bits). For MC estimation, 25 subsets of embryos were analyzed per subset size. For estimation from positional error, 100 estimates at each
subsample size (data fractions f = 0.5, 0.55, . . . , 0.85, 0.9) were performed. In the MC estimation, where MC sampling contributes to the error on the
extrapolated information value, the error on the final estimate is taken to be the SD of the estimates over 25 subsets at the highest data fraction
(smallest 1/M). For estimation from positional error that does not use a stochastic estimation procedure, the error estimate on the final extrapolation is
the variance due to small number of samples, estimated as 221/2 times the SD over 100 estimates at half the data fraction.

Figure 12 Positional information carried by pairs of gap genes and their
redundancy. For each gene pair (horizontal axis) the first bar represents
the sum of individual positional informations (color coded as in Figure 5),
using the direct estimate. The second (black) bar represents the positional
information carried jointly by the gene pair, estimated using SGA with
direct numerical evaluation of the integrals. Fractional redundancy R
(Equation 29) is reported above the bar.
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noise regime (note that this might not be true for single genes
or gene pairs) and that tractable approximations to positional
information are therefore available.

Discussion

To generate a differentiated body plan during the develop-
ment of a multicellular organism, cells with identical genetic
material need to reproducibly acquire distinct cell fates,
depending on their position in the embryo. The mechanisms
of establishment and acquisition of such positional informa-
tion have been widely studied, but the concept of positional

information itself has, surprisingly, eluded formal definition.
Here we have provided a mathematical framework for
positional information and positional error based on infor-
mation theory. These are principled measures for quan-
tifying how much knowledge cells can gain about their
absolute location in the embryo—and thus how precisely
they can commit to correct cell fates—by locally reading
out noisy gene expression profiles of (possibly multiple)
morphogen gradients. From this broad perspective, our
framework is a mathematical realization of the classic ideas
put forth by Wolpert almost 50 years ago (Wolpert 1969).

An information-theoretic formulation of positional in-
formation has a number of very attractive features. First
and foremost, it is mechanism independent. Many plau-
sible mechanisms exist for the establishment of spatial gene
expression patterns, involving the processes of gene regula-
tion, signaling, controlled degradation, etc. In particular,
these mechanisms could involve spatial coupling, e.g., by
diffusion (Little et al. 2013). The spatial aspect of the prob-
lem seemingly suggests that our definition of positional in-
formation that considers gene expression locally—separately
at each spatial location x—is insufficient or incomplete. How-
ever, irrespective of the mechanisms involved, what ulti-
mately matters for positional information is the final pattern
at the local scale, where nuclei make decisions; specifically,
what matters are the mean profile shapes and their (co)var-
iability. This thinking forces us to make a clear distinction
between the mechanistic processes that generate expres-
sion profiles and the positional information that these pro-
files carry.

Our definition of positional information is also free of
assumptions of what specific geometric features of the
expression profiles—boundaries, domains, slopes, etc.—
“carry” or encode the information. Much prior work has fo-
cused on the sharpness of an expression boundary as a proxy
for positional information (Meinhardt 1983; Crauk and
Dostatni 2005; Dahmann et al. 2011; Lopes et al. 2012;
Zhang et al. 2012). It is unclear, however, how to generalize
this approach to systems with more than one expression
boundary, and, even more profoundly, we show that the
boundary sharpness is not the feature that actually maximizes
positional information. In contrast, the information-theoretic
framework makes it clear in what particular way profile shapes
and their (co)variabilities need to be combined into an appro-
priate measure of positional information. This measure and the
associated positional error naturally generalize to systems with
an arbitrary number of gene gradients.

Furthermore, positional information inherits all the
attractive features of mutual information. The numerical
value of mutual information can be interpreted in terms of
the number of distinguishable states or, in the developmen-
tal context, as the number of distinguishable positions and
cell fates. Information is reparameterization invariant: its
value does not depend on what units, or what scale, e.g., log
vs. linear, the expression levels are measured. To estimate
the information, carefully worked out estimation procedures

Figure 14 Positional error for a single gene and a pair of genes. (A) The
mean hb profile and standard deviation across N ¼ 24 embryos of data
set A, as a function of fractional egg length. The inset shows a close-up
with the positional error sx determined geometrically from the mean gðxÞ
and the variability sg of the profiles. (B) Positional error for hb, computed
using Equation 17 (dashed line corresponds to sx = 0.01). Error bars are
obtained by bootstrapping 10 times over N =2 embryo subsets. (C and D)
Plots analogous to A and B for Kr. (E) Three-dimensional representation of
hb and Kr profiles from A and C as a function of position x. The mean and
standard deviations of the gene expression levels are shown in the
{hb, Kr} plane in a gray curve with error bars; cf. the joint distribution of
hb and Kr expression levels in Figure 11A. The black curve that extends
through the cube volume shows the average expression “trajectory” as
a function of position x. (F) Positional error computed using Equation 21
for the {hb, Kr} pair.
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exist and can be adapted to the developmental context. Fi-
nally, as experimental variability can only decrease the in-
formation, the computed values will always be conservative
lower-bound estimates of the information that approach
the true value from below as experimental techniques
advance.

Methodologically, we have provided enough detail to make
this framework applicable to different systems and experi-
mental setups. In particular, we have shown how data can be
aligned and normalized if necessary; how different partial
stainings can be merged into a consistent data set; and how
analysis methods, including inference from data, numerical
computation, and information estimation, should be performed
on real experimental data. Importantly, we have proposed how
information can be estimated in the small noise regime (which
is likely applicable in different systems) and how the consis-
tency of these estimates can be validated.

An important shortcoming of the proposed analysis frame-
work is the assumption that positional information can be read
out from steady-state expression patterns. Expression patterns
of the gap gene system are highly dynamic even within a given
nuclear cycle. While they appear most stable in the particular
time class during nuclear cycle 14 that we chose for our
analysis, whether that constitutes a true steady state has been
debated (Bergmann et al. 2007; Siggia 2008). There exist
other systems, e.g., the segmentation clock in vertebrate somite
formation (Pourquie 2001), which are intrinsically dynamic.
While it is possible that positional information in all of these
systems is encoded in the expression levels in particular time
windows, it could (at least in principle) also be encoded in full
gene expression trajectories, i.e., the temporal sequences of
gene expression levels. Extending the information-theoretic
approach presented here to include such a temporal aspect will
be an important direction of future research.

A significant drawback of the current experiments is their
restriction to extracting expression profiles from below the
dorsal embryo surface. The resulting analyses—including
this one—therefore confound the expression levels of neigh-
boring nuclei with the levels in the interstitial cytoplasmic
space, while the only expression levels that are meaningful
for regulating downstream genes are the nuclear ones. Ide-
ally a data set would contain expression levels on a nucleus-
by-nucleus basis (Myasnikova et al. 2001, 2009; Surkova

et al. 2008), possibly encompassing all nuclei in three-
dimensional (3D) reconstructed embryos (Fowlkes et al.
2008). While the analysis methods presented here can be
easily extended and applied to data sets containing discrete
nuclear expression levels, collecting the large data sets
needed to estimate profile covariances is a challenge for
current nuclear and 3D experimental setups.

The application of our methods to the Drosophila gap gene
system has generated several results beyond those reported in
Dubuis et al. (2013b), which we now highlight. First, the
results are consistent across four different data sets, with
fractional deviations in information estimates of ,5%. This
is comparable to the estimation errors on single data sets,
indicating the extremely high biological reproducibility, as

Figure 15 Positional error for the gene quadruplet. Posi-
tional error has been estimated using Equation 21 and
extrapolated to large sample size. Error bars are bootstrap
error estimates. Different colors denote different data sets
(inset).

Figure 16 The validity of the small noise approximation. Synthetic data
were generated from data set A by keeping the mean profiles as inferred
from the data, forcing the covariance matrix to be diagonal (by zeroing
out the off-diagonal terms), and multiplying the variances by a tunable
factor q (see inset); q = 1 corresponds to measured variances in the data
and q , 1 (q . 1) corresponds to decreasing (increasing) amount of
variability. For each q, positional information was estimated using Equa-
tion 21 (vertical axis) or using Monte Carlo integration (horizontal axis).
Error bars are SD across 10 independent Monte Carlo integrations for
every q.
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well as very stringent control over the experiment and data
analysis. Second, the analysis of positional error explicitly
shows that information is encoded in the parts of the expres-
sion profile that have high slopes (spatial derivatives), further
weakening the interpretation of gap genes as providing sharp
boundaries between expression domains. Third, we find that
at the level of the gene quadruplet, the information is repre-
sented very redundantly. This opens up the possibility where
such redundancy could be used for robustness to different
external perturbations or mutations, by allowing a measure
of “error correction” in the downstream layer (Gierer 1991).
Finally, the difference between information estimates with
and without X alignment implies that a noticeable fraction
of biological variability across the embryos consists of rigid
shifts of the full gap gene expression pattern along the AP
axis. This suggests that the biological system cares less about
the absolute position of each nucleus in the embryo and more
about their relative positions (i.e., order along the AP axis).
This is a topic of our future research.
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