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A theory (MPL) to compute the NMR chemical shifts in condensed matter systems using periodic
boundary conditions was presented by F. Mauri, B. Pfrommer, and S. G. [Rlys. Rev. Lett77,
5300(1996]. The MPL method has been implemented so far within a pseudopotential formulation
in which the wave functions are expanded in plane waves. In this paper, we compare analytically the
MPL approach within the density functional theory to existing methods for the calculation of the
chemical shifts such as GIA@auge-including atomic orbitalsCSGT (continuous set of gauge
transformations and IGAIM (individual gauges for atoms in molecule3o this end we apply the

MPL approach to molecules since the latter methods are conceived only for finite systems. We show
theoretically the equivalence between a variant of the CSGT and the MPL method applied to finite
systems. Moreover, we analyze numerically the efficiency of the different methods when atomic
orbital basis sets are employed, by comparing the basis-set convergence properties. We find that the
CSGT and IGAIM approaches have the same convergence properties as GIAO, whereas their
computational time is significantly smaller. In the MPL method, the contribution of the valence
electrons to the chemical shift converges rapidly with respect to the size of the basis set, whereas the
convergence properties of the core contribution are poor. We improve the convergence by
separating the core and the valence contributions in a gauge-invariant manner, by applying the MPL
method only to the valence contribution, and by treating the core contribution with IGAIM. The
performances of the resulting approach compare favorably with those of the other methods. Finally
we find that the core contribution to the chemical shift is independent of the chemical environment,
in contrast to what is sometimes found in the literature. In conclusion, our results indicate that, to
compute the chemical shifts in both molecules and solids, using atomic orbital basis sets, one could
use the MPL method to evaluate the valence contribution and add to it a rigid core contribution as
obtained, for instance, from an atomic calculation. 1899 American Institute of Physics.
[S0021-960609)30129-X]

I. INTRODUCTION NMR spectra in combination withb initio calculations lead
Nuclear magnetic resonan¢MR) is one of the most to an unequivocal determination of the microscopic structure
of the system under study. Moreover, the degree of agree-

powerful and extensively used experimental methods to ent between calculated and measured chemical shifts is a
probe the electronic structure and the molecular geometry ng

materialst A significant part of the NMR spectral informa- enchmark of the theoretical modeling of the underlying

tion are the chemical shifts, which describe the interactionelewomc structure. . . .
In quantum chemistryab initio calculations of the

between an external magnetic field and the magnetic momen . ) o , .
of an atomic nucleus. Numericab initio calculations of the € emical shift exist since the 70's. In these calculations the
chemical shifts have proved to be a useful tool to interprefaIeCtronIC wave functions are expanded in terms of atomic

experimental data. Indeed, in certain cases the measur&iPitals” The use of atomic basis sets of finite size yields a
dependence of the chemical shift upon the chosen gauge ori-

gin of the vector potential that describes the external mag-

dpresent address: Department of Chemistry and Materials Institute, Princth-etic field. Many different approaches exist to deal with this
ton University, Princeton, NJ 08544. ’
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calized orbitals(IGLO) method’ or the set of gauge trans- where B{*)(r\) is the induced first-order magnetic field in
formation (SGT) class of methods, which includes the indi- the sample and®)(r) is the induced first-order quantum
vidual gauges for atoms in moleculd§AIM) method and  electric current.

the continuous set of gauge transformatidiCSGT) Using the symmetric gauge for the vector potential that
approache§” All these methods are restricted finite sys-  describes the external magnetic field

tems such as molecules and clusters that are isolated in free L )

space. Recently Mauri, Pfrommer, and Lo(i¢PL)® devel- A(r")= 3Bexx (r’' —d), @
oped a method to compute the chemical shift in extendegyith the gauge origird, we get within DFT2-14

condensed matter systems using periodic boundary condi-

. . e 1 (O)y¢ /(0

tions. These allow us to pgrform calculat_lons on tqnifymtg ()= - = E (w(o)l[p|r>(r| +r)(rp] [e ") (el

systems formed by the unit cell and all its periodic replicas. cee ' ° €0~ €c

The MPL approach has been applied to periodic systems, ©

such as crystafs and, with a super-cell technique, to disor- X[(r—d)Xp]-Bed o )

dered systems such as liquitiand amorphous materials. 1

So far, the MPL method has been used only in calcula- — —p(r)BgyX (r—d). (3

2c

tions based on pseudopotentials and plane waves. The use of

pseudopotentials introduces errors which are negligible onlyere, |¢{”)) are the eigenfunctions of the unperturbed
for first- and second-period elements of the periodic t&te. Hamiltonian with eigenvalues; and the summation is over

A necessary condition to compute chemical shifts of heaviebccupied state® and empty state®, p(r)=23(%|r)
elements with a pseudopotential approach is that the corg<r|¢,go)) is the electron density, and a factor 2 for the spin
electron contribution to the chemical shifts be rigid, i.e., in-is included!® In Eq. (3) the term containing the sum over
dependent from the chemical environment. Finally, the effioccupied and empty states gives the first-order paramagnetic
ciency of the MPL method when atomic orbital basis sets areontribution and the term containing(r) gives the first-
employed still has to be verified. order diamagnetic contribution.

In this paper, we compare analytically the MPL ap- If Eq. (3) is evaluated exacthyd*)(r) is independent of
proach to the quantum chemistry methods for the calculatiothe choice of the gauge origth As a consequence we have
of the chemical shift within the density functional theory ON/ .1(0)

(DFT). We find that the MPL approach, when applied to O=} 2 <¢//(°)|[p|r><r|+|r><r|p]We Nwe|

molecules, is equivalent to a variant of the SGT approach. Coe  ° € €¢

Moreover, we analyze numerically the efficiency of the MPL 1

method_ when atomic orbital basis sets are_employed, by X[AX P Beyd 0) + = p(1) Beyex . (4)
comparing the basis-set convergence properties of the MPL 2c

method to those of the well established GIAO and IGAIM ginced andB,,, are arbitrary, it turns out that

methods. Finally we separate the contributions to the chemi-

cal shift of core and valence electrons in a gauge-invariant _ (0)

manner to study the validity of a frozen-core approximation 6“Bp(r)_202,e (o lLpalr)rI+Ir(rip.]

in chemical shift calculations. ©ON, 1(0)

The paper is divided in two parts. In the first, a short x|¢e e
overview of the SGT class of methods is given, the MPL €, €¢
approach is applied to moIe_cuIar systems, _and fir?all.y a hy\'Nhereoz and B are any two of the Cartesian coordinates.
brid method for the calculation of the chemical shift is pre-

red. wh . 4 val at Equation(5) is the generalizeé-sum rule!®
sented, where we separale core and valence stales gauge- |, merical calculations based on atomic orbitals, finite

invariantly. In the second part we discuss our numerica‘_|i|bert spaces are used. In this case, the generafized
results. Different methods are checked for their convergenc le no longer holds. In barticular thé left-hand side of Eq
properties with _respe(_;t tq the size of several t_)aSi_S Sets, aQ ) contains the electron ground—’state density, which con-
we pr_esent an |nves_t|ga_t|on of the core contr|but|on_to thQ/erges faster with respect to the basis set size than the right-
c_hem|ca| shift, studying its dependence on the chemical ®hand side, which depends on transitions from occupied to
vironment, empty states. Hencd™*)(r) computed using Eq(3) is no
longer invariant for a variation of the gauge origih or
equivalently for a rigid translation of the system. This con-
Il. THEORY stitutes the so-called gauge origin problem in the calculation
of &. The deviations of the calculated values from the con-
vergedd results depend sensitively on the gauge origin. For
The chemical shift tenso¥ is defined by the linear re- example, if the current is computed at a pairfar from the
sponse of a sample to an external uniform magnetic Beld  gauge origind, both, para- and diamagnetic partsJéf(r)

Pl vy, (5)

A. Magnetic response within DFT

at the nuclear positiony: become large and the sum of the two parts converges slowly
1 B with respect to the basis set.
Bi(nl)(rN): _3(rN)Bext:_J' dBra@®(r)yx T Y _This problem is addressed |n the set of gauge transfor-
c rn—r|® mations(SGT) methods by redefining the gauge origiras a
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parametric function that depends on the positicat which ~ on the whole space. In contrast, the MPL method in its gen-

JB(r) is evaluated.In this case the vector potential is: ~ eral formulation, Ref. 8, can be applied both to extended
. systems and to isolated molecules, where it reduces to
A(r')= 3Bexx (r' —d(r)), 6)  Eq.(9).
and the current becomes
1//(0) w(O)
IV(r)=— 2 I+ )l L] 8. 1GCV method
In this section we separaté into the contributions due
X{[rXp]-Bel ¢g°)>—p|¢//§,°)>-[Bext>< d(r1} to core and valence electrons in a gauge-invariant manner.
1 This allows us to consider two different gauges for core and
o (DBuX T —d(O)]. 7 valence electrons.
2¢P(1Bex[r—d(n)] @) The complete set of all statéa} is given by the distinct

union of the core statelx}, the valence statefs/}, and the
empty statege}. Then we rewrite the induced first-order
electronlc currend® as a sum of its core and valence con-
tributions

The choice of the parametric functia(r) determines
different methods within the SGT class. A possible choice is
setting d(r)=r. We call this approach the d{(r)=r"
method. In this case, E¢7) becomes

(0)y( (©)
W)= 2(l//(o)|[p|r>(r|+|r><r|p]M ><¢ | I =304 9O, ©

(O _ [ ,(0) by dividing the set of occupied statés} in Eq. (7) into the

XALrXP]-Bed ¥o") ~PlYo ") [BewXrI}h- (8 {c} and{v} subsets. In this way, however, neith#! nor
In this formulation only terms containing a sum over bothJ(l) would be separately gauge-invariant because by doing
occupied and empty states appear; each term in this doubkb the basis wave function sets would {m&{e} for IV
summation, as well as the total current, is independent of and{v}@{e} for J). In a gauge-invariant separation
rigid translation of the system and hence invariant for gaugend J(l) the same complete basis set has to be used in both
origin transformations. Notice that E¢8) can also be de- cases. Formally, this is achieved by redefining the sets of
rived using the generalized-sum rule, by replacing occupied and empty states in E) [or in Eq. (5)] in the
—p(r) 8,5 in Eq. (3) by the left-hand side of Ed5). Simi-  following way for J(Cl)
larly the MPL method has been derived in Ref. 8 using the
generalized-sum rule for periodic systems. {o}={c}, {e}={vie{e}); (10)

One of the main results of this paper is that the MPL
method, which has been developed to deal with extended
periodic systems, reduces precisely to B).when it is ap-
plied to isolated molecules. The analytical derivation of this
result is given in the Appendix. To apply the MPL method to ~ {o}—{v}, {e}—{c}e{e}. 11
an isolated molecule, we consider a periodic system with one
molecule per unit cell in the limit when the volume of the In other words, the correct separation is achieved by includ-
cell tends to infinity. In this limit the interaction between the ing also{c} to {v} transitions in addition tdc} to {e} transi-
molecule and its periodic replicas is removed. tions for J(l) and by including alsqv} to {c} transitions in

Another method of the SGT class is the IGAIM metfiod, addition to{v} to {e} transitions ford{") .28 In this way 3"
where the gauge origin is chosen to be the position of thandJ (D are described mdependently within the full basis set
nearest atomic nucleus to the pointat which J¥)(r) is  and are gauge-invariant for a complete Hilbert space. Notice
evaluated. Also in this casé®)(r) is independent of a rigid that our separation is independent of the method used to cope
translation of the system and hence invariant for gauge origiwith the gauge origin problem.
transformations. We can now define the individual gauge for core and

The last proposed method of the SGT class is the CSGValence statedGCV) method in which we use two different
method’ In the regions close to the nuclei the functider)  gauges fod") andJ(Y). We use IGAIM forJ(M) as the core
is chosen as in the IGAIM method. In the regions betweens well approximated by a spherical closed shell system. In-
two nuclei a smooth interpolation replaces the step functiordeed, in such a system the paramagnetic part vanishes within
of IGAIM. However, the results forr obtained withcauss-  IGAIM and the current is just given by its diamagnetic part,
IAN 94 (Ref. 17 using CSGT and IGAIM differ by less than which depends on the charge density and converges quickly
10~3 ppm. Therefore in the following we will just present with respect to the basis set size. For the valence electrons
IGAIM results. this argument does not apply because they describe the bond

Finally, notice that Eqs(7) and (8) cannot be used to region between the atoms. Therefore we wa¢e)=r for
computeJ®)(r) in an extended system described by periodiCJ(vl), since taking the gauge origin close to the point at which
boundary conditions. Indeed, in a periodic system the expedhe current is evaluated avoids large para- and diamagnetic
tation values of the angular momentym{®)|r x p|4{”)) are  contributions that do not cancel out if a finite basis set is
ill defined, since (%)) are Bloch wavefunctions delocalized used, as we mentioned before.

and forJ("
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Il. NUMERICAL RESULTS
(1-V).

Gregor, Mauri, and Car

TABLE I. Convergence of DFT-LDA-sum rule with respect to basis sets

In this part we present the results for the isotropic chemi-

a
cal shifto, as obtained by performing numerical calculations ! ! " v M Ne
on small molecules. We use the quantum chemical codeCsHsN
GAUSSIAN 94" to compute geometries and wave functions of Total 395 77 398;30 41“1)'3 ﬁ'g i;'g ‘112
the molecules within DFT in the local density approximation  ygence  26.0 284 292 208 298 30
(LDA). The o are calculated for various gauge origin meth- c4H;
ods. The GIAO and IGAIM approaches are already available Total 358 381 409 415 4138 42
in the code’. With a straightforward modification of the code ~ Core 97 99 117 118 120 12
we implementd(r)=r and IGCV. We can now compare Cga'ence 261 282 291 298 298 30
numerically four different methods, namely GIAO, IGAIM, Total 112 124 135 138 139 14
d(r)=r, and IGCV, by checking their convergence proper-  core 3.2 32 39 39 40 4
ties with respect to the quality of the basis set. In the follow-  Valence 8.0 9.1 9.6 9.9 9.9 10
ing sections we present results for molecules containing H, SizHs
C, N, O, F, Si, and P atoms. For C, N, O, and F we take the (T:ztrae' 21‘;‘1 2143'92 31%"; ei%'g ?ig; ‘z%
1s orbitals as core, and for Si and P we take tise Zs, 2p Valence 103 117 116 120 118 12
orbitals as core. SiHaF

. Total 189 214 246 253 257 26

A. Basis sets Core 82 82 114 114 119 12
All our calculations ofo are done with standardized ba- PF\;a'ence 107 132 133 139 138 14

sis sets constructed from thg correlation conS|st_ent polarized 1. 294 353 392 412 412 42
core/valence(cc-pCVx2) basis sets, developed in Ref. 19.  core 11.5 116 153 153 159 16
These basis sets extend the ideas of the cc-pVxZ%hys Valence 179 236 239 258 253 26

including extra functions designed for core—core and core=—
valence correlation. We label the basis sets from | to V inaNe' 's the number of electrons.
order of increasing completeness, with the size of the basis

set increasing with increasing number. Basis sets | and Il ar@ell as going from triple to quadruple zeta has the opposite
double zeta, cc-pCVDZ and aug-cc-pCVDZ respectively, baeffect.

sis sets Il and IV are triple zeta, cc-pCVTZ and aug-cc-

pCVTZ respectively, and basis set V is the quadruple zet®. Methods

cc-pCVQZ basis setsee EMSL Gaussian Basis Set Order

Forn?! for more information. For hydrogen atoms we use The convergence of the GIAO, IGAIM, IGCV, and

the corresponding cc-pVxZ and aug-cc-pVxZ basis sets fop(r)=r methods with respect to basis sets is investigated on
sets | to V a large set of molecules. We use NHNF;, N,, and all

Molecular geometries are optimized with B3LYRef. molecules listed in Table Il except tetramethyl sildl&1S).
22) and with the 6-313G(2d,p basis set® In Fig. 1 we present the convergenceoofvith respect to the

A good test of the quality of a basis set is given by thebaS|s set sizes for all mentioned methods in thé&lCand

generalizedf-sum rule, whose connection to the gauge in-S'F4 molecules. Thed(r)=r method ShOW.S a slower_ con-

variance of magnetic properties we pointed out previouslyyerrqence than the other methods, especiallydfaf third-

Integrating the generalizedsum rule[Eq. (5)] with respect period atoms..NevertheIess the values ofdhle)fr method

tor, we get the simplé-sum rule are appro_achmg those of the others for basis sets of large
enough size.

We compare the IGCV method with GIAO and IGAIM
| he) (el

a4y, (YolPa———=Pgltho) = — 84pNal, (12)  in more detail in Figs. 2, 3 and 4, where we present, respec-
o€ €0 €e tively, the mean, mean absolute, and maximum error of C, F,
whereN, is the number of electrons in the system. " 450
For sets | to V we evaluate the left-hand side of Ei®) Ty PO [ e SR |
for all the occupied states in the system, as well as for the %° Sl >
core and the valence contributions to theum rule, which st~ ~o.- - ¥~ = 2~ fso
are separated as described in E4§)—(11). The results are E Em
shown in Table I, where we present the averaged value of th¢® CH o2
three diagonal elements of thesum rule with a=p 20 & 200 4
=x,y,z. The values are compared in the same table to the 1o 180
expected number of electrons in the considered system. Th | f m v v 100, i i v v

accuracy increases with respect to the basis sets and we no- . i« chemical shift of | .

tice that passing from cc-pCVxZ to aug-cc-pCVxZ has aI-FI.G' 1. Total isotropic chemical shift o §&Elson C nucleus and of SjFon
. ; Si nucleus with respect to basis sets | to V for different gauge methods

most no effect on the core contribution but increases th@dotted line: GIAO, dashed line: IGAIM, dash-dotted line: IGCV and solid

valence part, whereas going from double to triple zeta asne: d(r)=r).
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FIG. 2. Mean error to the converged DFT—LDA isotropic chemical ghift |G 4. Maximum error to the converged DFT—LDA isotropic chemical

ppm) on different elements with respect to basis sets for different gaugeshift (in ppm) on different elements with respect to basis sets for different
methods(dotted line: GIAO, dashed line: IGAIM, dash-dotted line: IGCV gauge methodédotted line: GIAO, dashed line: IGAIM, dash-dotted line:

IGCV).

N, Si, P, and H chemical shifts as a function of the basis sets.

The errors are computed with respect to the arithmetic meafpund to converge to the same value at sufficiently large
of the converged valuetasis \J of GIAO, IGAIM, and basis setgfor basis set V the methods differ by less than 1
IGCV methods. In each molecule all atoms of the same elePpm.

ment but with different chemical shifts are taken into consid- ~ Finally we mention that the calculation time of IGCV is
eration. We recall that for an infinite set of basis functions allof the order of IGAIM, which is considerably faster than
the methods converge to the same limit. We remark tha®!AO. For the considered molecules, the GIAO calculation
within our basis sets the convergence behavior of GIAO igs considerably more expensive than the IGAIM calculation
comparable to that of IGAIM. Furthermore we find that the if basis set V is used. In additioBAUSSIAN 94 provides par-
convergence behavior of the IGCV method is also compaallel calculations for the SGT class of methods, and hence
rable to these methods for all atoms but C, where the IGCVor IGAIM and IGCV, but not for GIAO, which makes the
convergence is slightly faster and for H atoms where thechoice of the former methods even more favorable.

IGCV method is less performant. For all atoms theare

C. Core contribution to the chemical shift

In this section we present only converged res(igsis

15b__'_'f§u_ c » \'\,\ F V) obtained with the IGAIM method. Table Il presents the
Ew e gsn ‘\,\ variation of the total and the coreon C, Si, and P atoms in
< P \k. <ol BRI different molecules. While the variation ef is highly de-

R e 10 s S pendent on the chemical environment, the core contribution

° i vy i TR v appears to be constant. Indeed, the variation on all atoms in

S S our calculations turned out to be less then 0.6 ppm. As the
zo“‘t,: e N so;::_,s';__ si basis sets are quadruple zeta on the core orbitals, we have
i B T N four degrees of freedom in this region, and thus the core is
10 R < W not chosen to be rigid by default. In most cases only relative
s Vo= ok 10 \ . L
otx) Y oare req_uwed._ These can be com_put_ed with just the v_alence

o, m m v v o m m v v contribution, since the core contribution cancels out in the

differences.

% \\\ P . H Furthermore, in Table Il we also present the diamagnetic
.. ':__\\;A_ Tl part of the core contribution of the computed within the
=71 S & oy IGAIM method. Comparing these values to the total core

10 p- S o e contribution, we see that the core is essentially diamagnetic

o m et A if the gauge origin is chosen to be at the nucleus. This is not

) _ ~ true for a different choice of the gauge origin.
FIG. 3. Mean absolute error to the converged DFT-LDA isotropic chemical - npyigfarent results concerning the core contribution are
shift (in ppm) on different elements with respect to basis sets for different

. . . 4
gauge methodsdotted line: GIAO, dashed line: IGAIM, dash-dotted line: found in _the quantum Chem|c_a| _“terattﬁ"é- In R_ef- 4 the
IGCV). authors find an important variation between different mol-
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TABLE II. Core contribution to IGAIM isotropic absolute chemical shifts TABLE Ill. Contribution to DFT—LDA isotropic absolute chemical shifts
(in ppm for different molecules calculated at the DFT—LDA level of (o, in ppm due to valence to core state transitions. IGAIM ah@)=r

theory. o IS the total chemical shifty ., is the core contribution to the gauges are presented on C, F, Si, and P nuclei for different molecules.
chemical shift, andr.y..giaiS the diamagnetic part of the core contribution.

Molecule IGAIM d(r)=r
Molecule Ototal Ocore T core-dia C atom
C atom CH, -0.23 —-7.02
CcO —-21.16 198.81 198.72 CHsF —-0.04 —6.62
CH, 191.22 198.82 198.60 CsHsg -0.02 —6.85
CHsF 99.66 198.87 198.68 HCP —-0.04 —-6.33
CH3NH, 150.44 198.85 198.67 F atom
CgH12 148.34 198.85 198.70 CHsF —0.004 —-20.11
CeHe 39.52 198.82 198.71 SiF, -0.21 —20.04
CF, 35.29 199.00 198.92 SiH;F -0.17 —20.05
HCP 6.84 198.83 198.88 PF, —0.04 ~19.03
CsHsN? 34.14 198.82 198.71 Si atom
™S 182.08 198.82 198.65 SiF, 183 193
Si atom SiHsF -0.65 —2.04
SiF, 409.69 831.86 830.50 SiyH, —028 105
SiHgF 305.45 832.01 830.03 SiH, _0.41 206
Si,H, 202.99 832.06 830.60 P atom
SiH, 424.37 831.95 829.75 HCP ~0.35 —2.69
™S 304.39 831.99 831.60 PF, _0.22 _oe3
P atom P, ~0.14 -2.68
HCP 290.00 902.25 901.76 P, —0.001 _o81
PF; 172.52 902.86 902.19
P, —375.45 902.36 902.23
Py 826.62 902.44 902.34

&C atom on opposite position to N in the ring is presented.
gence properties of different methods with respect to the

o quality of Gaussian basis sets. We find that the CSGT and
ecules(up to 60 ppm for the core contribution t@r 0n |G A1\ approaches have the same convergence properties as
third-row elements such as Si, P, and S. In Ref. 24 the ays Ao put with a smaller computational cost. In the MPL
thors find a (elatlvely rigid core contr|but|_on in third-period method, the contribution of the valence electrons to the
atoms only if the elect_rons are considered as valencechemical shift converges rapidly with respect to the size of
orp|tals, contrary to What, is done in the present work. Wehe basis set, whereas the convergence properties of the core
think that these results differ from ours due to a nongauge; ,hribution are poor. We improve the convergence by sepa-
invariant separation of core and valence electrons in bo”ﬂating the core and the valence contributions in a gauge-

references. invariant manner, by applying the MPL method only to the

valence contribution and by treating the core contribution
D. Valence-core transitions in chemical shift within IGAIM. The performances of the resulting approach
calculations compare favorably with the other methods. From our calcu-

In order to achieve a gauge_invariant Separation betweeﬁtions, we find that the core contribution to the chemical
core and valence states it is necessary to follow the procehift is independent of the chemical environment, contrary to
dure discussed in Sec. IIB. In Table Ill we report our resultsWhat is sometimes found in the quantum chemical literature.
for the contribution taJ(!) due to valence—core transitions, Our results indicate that the chemical shifts in solids
When{o} and{e} in Eq (7) are chosen as Specified in Sec. could be calculated by USing the MPL method with atomic
Il B. The data shows that these contributions are negligibl@rbital basis sets for the valence contribution and by adding
when the IGAIM gauge is chosen, but they are not if thetO it & rigid core contribution as obtained, for instance, from
d(r)=r gauge is chosen. Interestingly, the valence to coré@n atomic calculation.
transitions for thed(r)=r gauge are also basically indepen-
dent of the chemical environment, and they could be ne-
glected if we only need the relative.

The fact that the core and the valence—core contribution§ CKNOWLEDGMENTS
to o are rigid suggests that, in principle, a computation of the
relative o for third-period atoms within a pseudopotential
approach should be possible.
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We have shown theoretically the equivalence between aasis sets for third-row elements prior to publication. This
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IV. CONCLUSION
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APPENDIX MOLECULAR LIMIT OF THE EXTENDED M (G) is the magnetization, which can be expressed as
SYSTEM NMR CHEMICAL SHIFT THEORY

M(G)=¥(G,0B VG, A3
In this appendix we apply the equations of the MPL (6)=X(C.0Bex (A3)

approach to an isolated molecule in free space. To obtain thehere ¥(G,G’) is the magnetic susceptibility matrix. The
molecular limit we consider a periodic lattice with a mol- current is given by
ecule per unit cell and we let the volume of the unit cell tend

(1) =i ¥
to infinity. JH(G)=icGX ¥(G,00Bs: VG. (A4)
Writing the electric current in Fourier space Notice that sincey(G,0) is finite, we haveJ?(G=0)=0.
_ Substituting the MPL expressibfor ¥(G,0) in Eq.(A4), we
IDr)=2 I(G)ecT, (A1)  getforG#0
G
. . ) - 1 ~
Whe;eG are the reciprocal lattice vectors, we have: I0(G)=3D(G) - EG(G.J(l)(G))’ (A5)
ZJ® =i
CJ (G)=iGXM(G). (A2) and

| k+q e><uk+q e|

J(l)(G)—___f & 7|Gr2f

(2m)° ((Uk,ol[(—iVJrk)lr)(rl+|r><r|(—iV+k+q

€k,0™ €k+q.e

|uk—q,e><uk—q,e|

X[(—iv"'k)xa]'BextJLIk,o>+<uk,o|[(_iV"—k)Xéﬂ.Bext €k,0~ €k—q,e

X[(=iV+K=a)[r)r|+[r)(r|(=iV+ k)]|uk,o>] - (A6)
q=0

Here|uy ;) is the periodic part of the unperturbed Bloch eigenstate corresponding to eigeaNaJumda is an arbitrary wave

vector of unit length, perpendicular B,. For a complete Hilbert space we ha¥®)(G)=J1(G) since we can show that

V-JO(r)=Vv-IM(r)=0. This is not the case for a finite basis set, because we no longeVha&(r)=0. However as we

compute& using the Biot—Savart law, Eql), it is easy to see that[JM]=¢[I®] and we can usd™)(G) in the following.

Using 2 eiG'(r"')zﬂéG(r—r’) where(} is the volume of a unit cell, we can again rewrite the current-gpace

W=t 25 o

cadq$

| k+q,e><uk+q,e|

(<uko|[<—|v+k>|r><r|+|r><r|<—|v+k+ 5

€k,0 €k+q.e

(2m)®

|uk—q,e><uk—q,e|

X[(=1V+K) X q]-Bex] Uy, 0) (U ol [( =1V +K) X O] -Bey €10~ Ek—g.e

X[(=iV+Kk=a)[r)(r|+|r){r[(=i1V+Kk)]|ug.o) +c, (A7)
q=0
|
wherec is a constant due to the=0 term. 5 i 9 d3k
We take the molecular limit by considering a single lat-3V(r)=— - — > f e T
C dq oe (2m)

tice cell, which contains one molecule and Bttend to
infinity. This implies thati™)(r)=0 outside of the volume
occupied by the molecule and herwe0 in Eq.(A7). As the
volume of the cell increases, the coupling between neighbor-

X (ol [(=TW) ) (r [+ [r K[ (=iV)]

ing cells becomes weaker. In this limit, the electronic disper- | he)(Wel iqr) -

. . . . X — € ( |qu)'Bextl¢o>
sion relation disappears and the energy eigenvadlesose €0 €e
their k-dependence, i.eg j—€;. Analogpusly, inside the el
unit cell the Bloch eigenfunctionig/y ;)=¢€'*"|u, ;) tend to F (| (—1V X Q) Bey 9" ———=
the canonical molecular _orbitalsbi> for the isolated mol- €0~ €Ce
ecule and henchy, ;)—e ' "|y;). _ _

The current, expressed in terms of molecular orbitals, XL=IV)(r |+ e[ (=) 11 o) . (A8)

reads a=0
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where we used the commutation relatigr-iV,e*™*"]
=+ke™™*" Notice that the integrand is-independent and
fQd3k/(27)3=1.

Deriving with respect tay we obtain

| he)(¥el

€o €e

~ 2
I0(r)= ¢ 2 H(ollplr)(r|+Ir)(r[p]

X[a'r][(pxa)'Bext]|‘//o>
—(oll(Q-0)pr)(r|+[r){r|(q-r)p]

XM(F’X&)'BMII ‘/’0> .

o~ €e

(A9)

We eliminateq by recalling that it is a vector perpen-

dicular to Bg,;, but otherwise completely arbitrary. There-

fore, taking two mutually perpendicular vectays and qs,
both perpendicular t8.,;, as in Ref. 8, and calculating

IW(r)= 33 (r,q,) +3ID(r,q)], (A10)

we get an expression independenﬁofwhich is identical to
Eq. (8).
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